LOJ#6281. 数列分块入门 5

Posted 自为

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LOJ#6281. 数列分块入门 5相关的知识,希望对你有一定的参考价值。

题目描述

给出一个长为 nnn 的数列,以及 nnn 个操作,操作涉及区间开方,区间求和。

输入格式

第一行输入一个数字 nnn。

第二行输入 nnn 个数字,第 i 个数字为 aia_ia?i??,以空格隔开。

接下来输入 nnn 行询问,每行输入四个数字 opt\mathrm{opt}opt、lll、rrr、ccc,以空格隔开。

若 opt=0\mathrm{opt} = 0opt=0,表示将位于 [l,r][l, r][l,r] 的之间的数字都开方。

若 opt=1\mathrm{opt} = 1opt=1,表示询问位于 [l,r][l, r][l,r] 的所有数字的和。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4

样例输出

6
2

数据范围与提示

对于 100% 100\%100% 的数据,1≤n≤50000,−231≤others 1 \leq n \leq 50000, -2^{31} \leq \mathrm{others}1n50000,2?31??others、ans≤231−1 \mathrm{ans} \leq 2^{31}-1ans2?31??1。

 

 

这道题的难点在于如何维护开根这个神奇的操作

我自己测的是1e7的数差不多开五六次根就会变成1,所以我们直接维护整个块内的数是否变成了1就可以了

 

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define int long long 
using namespace std;
const int MAXN=1e5+10;
const int INF=1e8+10;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=nc();}
    while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=nc();}
    return x*f;
}
int N;
int a[MAXN],block,L[MAXN],R[MAXN],belong[MAXN],sum[MAXN],flag[MAXN];

void Sqrt(int l,int r)
{
	for(int i=l;i<=min(r,R[l]);i++)
	{
		sum[belong[i]]-=a[i];
		a[i]=sqrt(a[i]);
		sum[belong[i]]+=a[i];
	}
	if(belong[l]!=belong[r])
		for(int i=L[r];i<=r;i++)
			sum[belong[i]]-=a[i],a[i]=sqrt(a[i]),sum[belong[i]]+=a[i];
	for(int i=belong[l]+1;i<=belong[r]-1;i++)
	{
		if(flag[i]) {continue;}
		flag[i]=1;
		for(int j=L[i*block];j<=R[i*block];j++)
		{
			sum[i]-=a[j];
			a[j]=sqrt(a[j]);
			sum[i]+=a[j];
			if(a[j]>1) flag[i]=0;
		}
	}
}
int Query(int l,int r)
{
	int ans=0;
	for(int i=l;i<=min(r,R[l]);i++)
		ans+=a[i];
	if(belong[l]!=belong[r])
		for(int i=L[r];i<=r;i++)
			ans+=a[i];
	for(int i=belong[l]+1;i<=belong[r]-1;i++)
		ans+=sum[i];
	return ans;
}
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
   // freopen("b.out","w",stdout);
    #else
    #endif
	N=read();block=sqrt(N);
	for(int i=1;i<=N;i++) a[i]=read();
	for(int i=1;i<=N;i++) belong[i]=(i-1)/block+1,L[i]=(belong[i]-1)*block+1,R[i]=belong[i]*block;
	for(int i=1;i<=N;i++) sum[belong[i]]+=a[i];
	for(int i=1;i<=N;i++)
	{
		int opt=read(),l=read(),r=read(),c=read();
		if(opt==0) 
			Sqrt(l,r); 
		else  
			printf("%d\n",Query(l,r));
	}
    return 0;
}

  

以上是关于LOJ#6281. 数列分块入门 5的主要内容,如果未能解决你的问题,请参考以下文章

LOJ.6281.数列分块入门5(分块 区间开方)

LOJ#6281. 数列分块入门 5

#6281. 数列分块入门 5

#6280. 数列分块入门 4 #6281. 数列分块入门 5

Loj 6285. 数列分块入门 9

Loj 6282. 数列分块入门 6