Java并发编程:Lock
Posted lucky.dai
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Java并发编程:Lock相关的知识,希望对你有一定的参考价值。
原文出处: 海子
在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。
也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西。
以下是本文目录大纲:
一.synchronized的缺陷
二.java.util.concurrent.locks包下常用的类
三.锁的相关概念介绍
若有不正之处请多多谅解,并欢迎批评指正。
一.synchronized的缺陷
synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?
在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:
1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;
2)线程执行发生异常,此时JVM会让线程自动释放锁。
那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。
因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。
再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。
但是采用synchronized关键字来实现同步的话,就会导致一个问题:
如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。
因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。
另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。
总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:
1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。
二.java.util.concurrent.locks包下常用的类
下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。
1.Lock
首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:
1
2
3
4
5
6
7
8
|
public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock( long time, TimeUnit unit) throws InterruptedException; void unlock(); Condition newCondition(); } |
下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。
在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?
首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。
由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:
|
tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
所以,一般情况下通过tryLock来获取锁时是这样使用的:
1
2
3
4
5
6
7
8
9
10
11
12
|
Lock lock = ...; if (lock.tryLock()) { try { //处理任务 } catch (Exception ex){ } finally { lock.unlock(); //释放锁 } } else { //如果不能获取锁,则直接做其他事情 } |
lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。
由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。
因此lockInterruptibly()一般的使用形式如下:
1
2
3
4
5
6
7
8
9
|
public void method() throws InterruptedException { lock.lockInterruptibly(); try { //..... } finally { lock.unlock(); } } |
注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。
因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。
而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
2.ReentrantLock
ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。
例子1,lock()的正确使用方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { Lock lock = new ReentrantLock(); //注意这个地方 lock.lock(); try { System.out.println(thread.getName()+ "得到了锁" ); for ( int i= 0 ;i< 5 ;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception } finally { System.out.println(thread.getName()+ "释放了锁" ); lock.unlock(); } } } |
各位朋友先想一下这段代码的输出结果是什么?
Thread-0得到了锁 Thread-1得到了锁 Thread-0释放了锁 Thread-1释放了锁
也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。
知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。
|
这样就是正确地使用Lock的方法了。
例子2,tryLock()的使用方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
public class Test { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); //注意这个地方 public static void main(String[] args) { final Test test = new Test(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); new Thread(){ public void run() { test.insert(Thread.currentThread()); }; }.start(); } public void insert(Thread thread) { if (lock.tryLock()) { try { System.out.println(thread.getName()+ "得到了锁" ); for ( int i= 0 ;i< 5 ;i++) { arrayList.add(i); } } catch (Exception e) { // TODO: handle exception } finally { System.out.println(thread.getName()+ "释放了锁" ); lock.unlock(); } } else { System.out.println(thread.getName()+ "获取锁失败" ); } } } |
输出结果:
Thread-0得到了锁 Thread-1获取锁失败 Thread-0释放了锁
例子3,lockInterruptibly()响应中断的使用方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
public class Test { private Lock lock = new ReentrantLock(); public static void main(String[] args) { Test test = new Test(); MyThread thread1 = new MyThread(test); MyThread thread2 = new MyThread(test); thread1.start(); thread2.start(); try { Thread.sleep( 2000 ); } catch (InterruptedException e) { e.printStackTrace(); } thread2.interrupt(); } public void insert(Thread thread) throws InterruptedException{ lock.lockInterruptibly(); //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出 try { System.out.println(thread.getName()+ "得到了锁" ); long startTime = System.currentTimeMillis(); for ( ; ;) { if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE) break ; //插入数据 } } finally { System.out.println(Thread.currentThread().getName()+ "执行finally" ); lock.unlock(); System.out.println(thread.getName()+ "释放了锁" ); } } } class MyThread extends Thread { private Test test = null ; public MyThread(Test test) { this .test = test; } @Override public void run() { try { test.insert(Thread.currentThread()); } catch (InterruptedException e) { System.out.println(Thread.currentThread().getName()+ "被中断" ); } } } |
运行之后,发现thread2能够被正确中断。
3.ReadWriteLock
ReadWriteLock也是一个接口,在它里面只定义了两个方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
public interface ReadWriteLock { /** * Returns the lock used for reading. * * @return the lock used for reading. */ Lock readLock(); /** * Returns the lock used for writing. * * @return the lock used for writing. */ Lock writeLock(); } |
一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。
4.ReentrantReadWriteLock
ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。
下面通过几个例子来看一下ReentrantReadWriteLock具体用法。
假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
public class Test { private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); public static void main(String[] args) { final Test test = new Test(); |