TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类
Posted 一个处女座的IT
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类相关的知识,希望对你有一定的参考价值。
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter learning_rate = 0.001 training_epochs = 20 batch_size = 256 display_step = 1 examples_to_show = 10 # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28像素即784个特征值) #tf Graph input(only pictures) X=tf.placeholder("float", [None,n_input]) # hidden layer settings n_hidden_1 = 128 n_hidden_2 = 64 n_hidden_3 = 10 n_hidden_4 = 2 weights = { \'encoder_h1\': tf.Variable(tf.random_normal([n_input,n_hidden_1])), \'encoder_h2\': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])), \'encoder_h3\': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])), \'encoder_h4\': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_4])), \'decoder_h1\': tf.Variable(tf.random_normal([n_hidden_4,n_hidden_3])), \'decoder_h2\': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])), \'decoder_h3\': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])), \'decoder_h4\': tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { \'encoder_b1\': tf.Variable(tf.random_normal([n_hidden_1])), \'encoder_b2\': tf.Variable(tf.random_normal([n_hidden_2])), \'encoder_b3\': tf.Variable(tf.random_normal([n_hidden_3])), \'encoder_b4\': tf.Variable(tf.random_normal([n_hidden_4])), \'decoder_b1\': tf.Variable(tf.random_normal([n_hidden_3])), \'decoder_b2\': tf.Variable(tf.random_normal([n_hidden_2])), \'decoder_b3\': tf.Variable(tf.random_normal([n_hidden_1])), \'decoder_b4\': tf.Variable(tf.random_normal([n_input])), } def encoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[\'encoder_h1\']), biases[\'encoder_b1\'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[\'encoder_h2\']), biases[\'encoder_b2\'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[\'encoder_h3\']), biases[\'encoder_b3\'])) layer_4 = tf.add(tf.matmul(layer_3, weights[\'encoder_h4\']), biases[\'encoder_b4\']) return layer_4 #定义decoder def decoder(x): # Decoder Hidden layer with sigmoid activation #2 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights[\'decoder_h1\']), biases[\'decoder_b1\'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights[\'decoder_h2\']), biases[\'decoder_b2\'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights[\'decoder_h3\']), biases[\'decoder_b3\'])) layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights[\'decoder_h4\']), biases[\'decoder_b4\'])) return layer_4 # Construct model encoder_op = encoder(X) # 128 Features decoder_op = decoder(encoder_op) # 784 Features # Prediction y_pred = decoder_op #After # Targets (Labels) are the input data. y_true = X #Before cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph with tf.Session() as sess: sess.run(tf.global_variables_initializer()) total_batch = int(mnist.train.num_examples/batch_size) # Training cycle for epoch in range(training_epochs): # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", \'%04d\' % (epoch+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") encode_result = sess.run(encoder_op,feed_dict={X:mnist.test.images}) plt.scatter(encode_result[:,0],encode_result[:,1],c=mnist.test.labels) plt.title(\'Matplotlib,AE,classification--Jason Niu\') plt.show()
以上是关于TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类的主要内容,如果未能解决你的问题,请参考以下文章
TF400898: 发生内部错误。活动 ID:1fc05eca-fed8-4065-ae1a-fc8f2741c0ea