无监督异常检测之LSTM组成的AE

Posted nanhaijindiao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了无监督异常检测之LSTM组成的AE相关的知识,希望对你有一定的参考价值。

我本来就是处理时间序列异常检测的,之前用了全连接层以及CNN层组成的AE去拟合原始时间序列,发现效果不佳。当利用LSTM组成AE去拟合时间序列时发现,拟合的效果很好。但是,利用重构误差去做异常检测这条路依旧不通,因为发现异常曲线的拟合效果也很好……算了,这次先不打算做时间序列异常检测了。在这里把“基于LSTM的auto-encoder”的代码分享出来。

代码参考了Jason Brownlee大佬修改的:具体链接我找不到了,当他的博客我还能找到,感兴趣自己翻一翻,记得在LSTM网络那一章

https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/

from keras.layers import Input, Dense, LSTM
from keras.models import Model
from keras import backend as K
import numpy as np
from pandas import read_csv 
from matplotlib import pyplot
import numpy

from numpy import array
from keras.models import Sequential
from keras.layers import RepeatVector
from keras.layers import TimeDistributed
from keras.utils import plot_model

#导入数据,前8000个正常样本,剩下的样本包括正常和异常时间序列,每个样本是1行48列
dataset = read_csv(randperm_zerone_Dataset.csv)
values = dataset.values
XY= values
n_train_hours1 =7000
n_train_hours3 =8000
trainX=XY[:n_train_hours1,:]
validX =XY[n_train_hours1:n_train_hours3, :]
testX =XY[n_train_hours3:, :]
train3DX = trainX.reshape((trainX.shape[0], trainX.shape[1],1))
valid3DX =validX.reshape((validX.shape[0], validX.shape[1],1))
test3DX = testX.reshape((testX.shape[0],testX.shape[1],1))
# 编码器
sequence = train3DX
# reshape input into [samples, timesteps, features]
n_in = 48
# define model
model = Sequential()
model.add(LSTM(100, activation=relu, input_shape=(n_in,1)))
model.add(RepeatVector(n_in))
model.add(LSTM(100, activation=relu, return_sequences=True))
model.add(TimeDistributed(Dense(1)))
model.compile(optimizer=adam, loss=mse)
model.summary()
# fit model
history=model.fit(train3DX, train3DX, shuffle=True,epochs=300,validation_data=(valid3DX, valid3DX))
pyplot.plot(history.history[loss], label=train)
pyplot.plot(history.history[val_loss], label=valid)
pyplot.legend()
pyplot.show()
# demonstrate recreation
yhat = model.predict(sequence)
ReconstructedData=yhat.reshape((yhat.shape[0], -1))
numpy.savetxt("ReconstructedData.csv", ReconstructedData, delimiter=,)

 

以上是关于无监督异常检测之LSTM组成的AE的主要内容,如果未能解决你的问题,请参考以下文章

AIOps指标异常检测之无监督算法

如何评估无监督异常检测

《异常检测——从经典算法到深度学习》17 基于 VAE-LSTM 混合模型的时间异常检测

用于无监督异常检测的 Python AUC 计算(隔离森林、椭圆包络,...)

是否可以在 ML.Net 中进行多元无监督异常(异常值)检测?

《异常检测——从经典算法到深度学习》16 基于VAE和LOF的无监督KPI异常检测算法