$AC自动机+矩阵快速幂$
$多串统计问题...上AC自动机$
$看见len很大,那么我们就得用矩阵乘法$
$关于dp,题目中希望尽量多地匹配,AC自动机的匹配过程满足了这个条件,所以转移按AC自动机匹配的顺序转移就行了$
$如果到了一个终止节点,那么我们要统计,这里额外增加一个节点专门统计答案$
#include<bits/stdc++.h> using namespace std; const int N = 105; int n, len, m; char s[N]; struct node { int fail, p; int ch[26]; } t[N]; int cnt, root; struct matrix { long double a[N][N]; matrix() { for(int i = 0; i <= cnt; ++i) for(int j = 0; j <= cnt; ++j) a[i][j] = 0; } void set() { for(int i = 0; i <= cnt; ++i) { a[i][i] = 1; } } matrix friend operator * (const matrix &a, const matrix &b) { matrix t; for(int i = 0; i <= cnt; ++i) { for(int j = 0; j <= cnt; ++j) { for(int k = 0; k <= cnt; ++k) { t.a[i][j] += a.a[i][k] * b.a[k][j]; } } } return t; } } a, b; void insert(char *s) { int len = strlen(s), now = root; for(int i = 0; i < len; ++i) { int c = s[i] - ‘a‘; if(!t[now].ch[c]) { t[now].ch[c] = ++cnt; } now = t[now].ch[c]; } t[now].p |= 1; } void build() { queue<int> q; for(int i = 0; i < m; ++i) { if(t[root].ch[i]) { q.push(t[root].ch[i]); } } while(!q.empty()) { int u = q.front(); q.pop(); for(int i = 0; i < m; ++i) { int v = t[u].ch[i]; if(!v) { t[u].ch[i] = t[t[u].fail].ch[i]; } else { t[v].fail = t[t[u].fail].ch[i]; t[v].p |= t[t[v].fail].p; q.push(v); } } } ++cnt; a.a[cnt][cnt] = 1; for(int i = 0; i < cnt; ++i) { for(int j = 0; j < m; ++j) { if(t[t[i].ch[j]].p) { a.a[i][cnt] += 1.0 / m; a.a[i][0] += 1.0 / m; } else { a.a[i][t[i].ch[j]] += 1.0 / m; } } } } int main() { scanf("%d%d%d", &n, &len, &m); for(int i = 1; i <= n; ++i) { scanf("%s", s); insert(s); } build(); for(int i = 0; i <= cnt; ++i) b.a[i][i] = 1; for(; len; len >>= 1, a = a * a) { if(len & 1) { b = b * a; } } printf("%.7f\n", (double)b.a[0][cnt]); return 0; }