Given n, how many structurally unique BST‘s (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST‘s.
1 3 3 2 1 \ / / / \ 3 2 1 1 3 2 / / \ 2 1 2 3
动态规划:
G(n)
: the number of unique BST for a sequence of length n.
F(i, n), 1 <= i <= n
: the number of unique BST, where the number i is the root of BST, and the sequence ranges from 1 to n.
G(n) = F(1, n) + F(2, n) + ... + F(n, n).
Particularly, the bottom cases, there is only one combination to construct a BST out of a sequence of length 1 (only a root) or 0 (empty tree).
G(0)=1, G(1)=1.
F(i, n) = G(i-1) * G(n-i) 1 <= i <= n
Combining the above two formulas, we obtain the recursive formula for G(n)
. i.e.
G(n) = G(0) * G(n-1) + G(1) * G(n-2) + … + G(n-1) * G(0)
1 class Solution { 2 public int numTrees(int n) { 3 int[] G = new int[n+1]; 4 G[0] = 1;G[1] = 1; 5 for(int i = 2;i <= n ;i++) 6 for(int j = 1;j<= i; j++) 7 G[i] +=G[j-1]*G[i-j]; 8 return G[n]; 9 } 10 }