[Luogu4074][WC2013]糖果公园

Posted 租酥雨

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Luogu4074][WC2013]糖果公园相关的知识,希望对你有一定的参考价值。

BZOJ权限题!提供洛谷链接

sol

树上带修改莫队
很显然吧。对吧。
所以说树上莫队要怎么写呢?
我们知道莫队=给区间排序+依次暴力处理,所以对于树上莫队而言也是一样的。
序列莫队基于序列分块(也就是直接\(\sqrt{n}\)一块),而树上莫队则基于树分块。
所以说树分块是什么?别问我我昨天才学的现在还不是很懂
这里提供一份代码

void dfs(int u,int f)
{
    int ttp=tp;
    for (int e=head[u];e;e=a[e].next)
    {
        int v=a[e].to;if (v==f) continue;
        dfs(v,u);
        if (tp-ttp>=block) {++ccnt;while (tp>ttp) bl[s[tp--]]=ccnt;}
    }
    s[++tp]=u;
}

其中\(block\)是分的块的大小。


我们现在来看树上莫队
对于一组询问\((u,v)\),我们希望把这条路经上的信息累计到答案中。设\(S(u,v)\)表示\(u\)\(v\)路径上的所有点。

有一个这样的东西
\(S(u,v)=S(root,u)\) xor \(S(root,v)\) xor \(lca(u,v)\)
发现\(lca(u,v)\)多出来了不好搞,就把它搞掉,重新定义
\(T(u,v)=S(root,u)\) xor \(S(root,v)\)
所以\(S(u,v)=T(u,v)\) xor \(lca(u,v)\)
考虑\(T(u_1,v_1)\)如何转移到\(T(u_2,v_2)\)
\(T(u_1,v_1)\) xor \(T(u_2,v_2)=S(root,u_1)\) xor \(S(root,v_1)\) xor \(S(root,u_2)\) xor \(S(root,v_2)\)
\(=T(u_1,u_2)\) xor \(T(v_1,v_2)\)
所以如果\(u_1,u_2\)很近,\(v_1,v_2\)很近,那么移动耗费的复杂度就很小了。对于每个询问这样移动,然后\(lca(u,v)\)就单独拿出来处理就行了。
所以我们树分块以后,把所有询问按照u所在的块第一关键字v所在的块第二关键字排序。若带修改就把修改版本作为第三关键字。
至于剩下的部分,就怎么暴力怎么来吧。


莫队算法的难点不在于实现而在于复杂度的证明与块大小的选取。
以下代码的块的大小取的是\(n^{0.6}\),尝试发现取\(n^{0.5}\)会T一个点,取\(n^{0.666}\)\(n^{\frac 23}\)跑得比\(n^{0.6}\)要慢。

code

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define ll long long
const int N = 100005;
int gi()
{
    int x=0,w=1;char ch=getchar();
    while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
    if (ch=='-') w=0,ch=getchar();
    while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    return w?x:-x;
}
struct edge{int to,next;}a[N<<1];
int n,block,m,q,v[N],w[N],col[N],head[N],cnt;
int fa[N],dep[N],sz[N],son[N],top[N],dfn[N];//树链剖分
int ccnt,bl[N],s[N],tp;//树分块
int cnt1,cnt2,pre[N],vis[N],tot[N];//莫队
struct query{
    int u,v,t,id;
    bool operator < (const query &b) const
        {
            if (bl[u]==bl[b.u]&&bl[v]==bl[b.v]) return t<b.t;
            if (bl[u]==bl[b.u]) return bl[v]<bl[b.v];
            return bl[u]<bl[b.u];
        }
}q1[N];
struct xiugai{int pos,val,pre;}q2[N];
ll Ans,ans[N];
void dfs1(int u,int f)
{
    fa[u]=f;dep[u]=dep[f]+1;sz[u]=1;
    for (int e=head[u];e;e=a[e].next)
    {
        int v=a[e].to;if (v==f) continue;
        dfs1(v,u);
        sz[u]+=sz[v];if (sz[v]>sz[son[u]]) son[u]=v;
    }
}
void dfs2(int u,int up)
{
    top[u]=up;dfn[u]=++cnt;int ttp=tp;
    if (son[u]) dfs2(son[u],up);
    if (tp-ttp>=block) {ccnt++;while (tp>ttp) bl[s[tp--]]=ccnt;}
    for (int e=head[u];e;e=a[e].next)
    {
        int v=a[e].to;if (v==fa[u]||v==son[u]) continue;
        dfs2(v,v);
        if (tp-ttp>=block) {ccnt++;while (tp>ttp) bl[s[tp--]]=ccnt;}
    }
    s[++tp]=u;
}
int lca(int u,int v)
{
    while (top[u]^top[v])
    {
        if (dep[top[u]]<dep[top[v]]) swap(u,v);
        u=fa[top[u]];
    }
    return dep[u]<dep[v]?u:v;
}
void update(int x)//莫队单点修改
{
    if (!vis[x]) vis[x]=1,Ans+=(ll)v[col[x]]*w[++tot[col[x]]];
    else vis[x]=0,Ans-=(ll)v[col[x]]*w[tot[col[x]]--];
}
void modify(int x,int v)//带修改莫队的版本修改
{
    if (!vis[x]) col[x]=v;
    else update(x),col[x]=v,update(x);
}
void change(int u,int v)//路径修改
{
    while (u^v)
        if (dep[u]>dep[v]) update(u),u=fa[u];
        else update(v),v=fa[v];
}
int main()
{
    n=gi();block=pow(n,0.6);m=gi();q=gi();
    for (int i=1;i<=m;i++) v[i]=gi();
    for (int i=1;i<=n;i++) w[i]=gi();
    for (int i=1,u,v;i<n;i++)
    {
        u=gi(),v=gi();
        a[++cnt]=(edge){v,head[u]};head[u]=cnt;
        a[++cnt]=(edge){u,head[v]};head[v]=cnt; 
    }
    for (int i=1;i<=n;i++) pre[i]=col[i]=gi();
    dfs1(1,0);cnt=0;dfs2(1,1);
    while (tp) bl[s[tp--]]=ccnt;
    for (int i=1,type,x,y;i<=q;i++)
    {
        type=gi();x=gi();y=gi();
        if (type==0)
            q2[++cnt2]=(xiugai){x,y,pre[x]},pre[x]=y;
        else
        {
            if (dfn[x]>dfn[y]) swap(x,y);
            q1[++cnt1]=(query){x,y,cnt2,cnt1};
        }
    }
    sort(q1+1,q1+cnt1+1);cnt2=q1[1].t;
    for (int i=1;i<=cnt2;i++) modify(q2[i].pos,q2[i].val);
    change(q1[1].u,q1[1].v);
    int gg=lca(q1[1].u,q1[1].v);
    update(gg);ans[q1[1].id]=Ans;update(gg);
    for (int i=2;i<=cnt1;i++)
    {
        while (cnt2<q1[i].t) cnt2++,modify(q2[cnt2].pos,q2[cnt2].val);
        while (cnt2>q1[i].t) modify(q2[cnt2].pos,q2[cnt2].pre),cnt2--;
        change(q1[i].u,q1[i-1].u);change(q1[i].v,q1[i-1].v);
        gg=lca(q1[i].u,q1[i].v);
        update(gg);ans[q1[i].id]=Ans;update(gg);
    }
    for (int i=1;i<=cnt1;i++) printf("%lld\n",ans[i]);
    return 0;
}

以上是关于[Luogu4074][WC2013]糖果公园的主要内容,如果未能解决你的问题,请参考以下文章

LUOGU P4074 [WC2013]糖果公园

P4074 [WC2013]糖果公园

「WC2013」糖果公园

[WC2013][UOJ58]糖果公园 莫队算法

[BZOJ3052][UOJ#58][WC2013]糖果公园

WC2013 糖果公园 - 树上莫队