Description
小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验。实验用到的图片集一共有 N 张图片,编号为 1 到 N。实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选取的图片, 然后小D 需要根据他自己主观上的判断确定这两张图片谁好谁坏,或者这两张图片质量差不多。 用符号“<”、“>”和“=”表示图片 x和y(x、y为图片编号)之间的比较:如果上下文中 x 和 y 是图片编号,则 x<y 表示图片 x“质量优于”y,x>y 表示图片 x“质量差于”y,x=y表示图片 x和 y“质量相同”;也就是说,这种上下文中,“<”、“>”、“=”分别是质量优于、质量差于、质量相同的意思;在其他上下文中,这三个符号分别是小于、大于、等于的含义。图片质量比较的推理规则(在 x和y是图片编号的上下文中):(1)x < y等价于 y > x。(2)若 x < y 且y = z,则x < z。(3)若x < y且 x = z,则 z < y。(4)x=y等价于 y=x。(5)若x=y且 y=z,则x=z。 实验中,小 D 需要对一些图片对(x, y),给出 x < y 或 x = y 或 x > y 的主观判断。小D 在做完实验后, 忽然对这个基于局部比较的实验的一些全局性质产生了兴趣。在主观实验数据给定的情形下,定义这 N 张图片的一个合法质量序列为形如“x1 R1 x2 R2 x3 R3 …xN-1 RN-1 xN”的串,也可看作是集合{ xi Ri xi+1|1<=i<=N-1},其中 xi为图片编号,x1,x2,…,xN两两互不相同(即不存在重复编号),Ri为<或=,“合法”是指这个图片质量序列与任何一对主观实验给出的判断不冲突。 例如: 质量序列3 < 1 = 2 与主观判断“3 > 1,3 = 2”冲突(因为质量序列中 3<1 且1=2,从而3<2,这与主观判断中的 3=2 冲突;同时质量序列中的 3<1 与主观判断中的 3>1 冲突) ,但与主观判断“2 = 1,3 < 2” 不冲突;因此给定主观判断“3>1,3=2”时,1<3=2 和1<2=3 都是合法的质量序列,3<1=2 和1<2<3都是非法的质量序列。由于实验已经做完一段时间了,小D 已经忘了一部分主观实验的数据。对每张图片 i,小 D 都最多只记住了某一张质量不比 i 差的另一张图片 Ki。这些小 D 仍然记得的质量判断一共有 M 条(0 <= M <= N),其中第i 条涉及的图片对为(KXi, Xi),判断要么是KXi < Xi ,要么是KXi = Xi,而且所有的Xi互不相同。小D 打算就以这M 条自己还记得的质量判断作为他的所有主观数据。现在,基于这些主观数据,我们希望你帮小 D 求出这 N 张图片一共有多少个不同的合法质量序列。我们规定:如果质量序列中出现“x = y”,那么序列中交换 x和y的位置后仍是同一个序列。因此: 1<2=3=4<5 和1<4=2=3<5 是同一个序列, 1 < 2 = 3 和 1 < 3 = 2 是同一个序列,而1 < 2 < 3 与1 < 2 = 3是不同的序列,1<2<3和2<1<3 是不同的序列。由于合法的图片质量序列可能很多, 所以你需要输出答案对10^9 + 7 取模的结果
Input
第一行两个正整数N,M,分别代表图片总数和小D仍然记得的判断的条数;
接下来M行,每行一条判断,每条判断形如”x < y”或者”x = y”。
Output
输出仅一行,包含一个正整数,表示合法质量序列的数目对 10^9+7取模的结果。
Sample Input
5 4
1 < 2
1 < 3
2 < 4
1 = 5
1 < 2
1 < 3
2 < 4
1 = 5
Sample Output
5
HINT
不同的合法序列共5个,如下所示:
1 = 5 < 2 < 3 < 4
1 = 5 < 2 < 4 < 3
1 = 5 < 2 < 3 = 4
1 = 5 < 3 < 2 < 4
1 = 5 < 2 = 3 < 4
100%的数据满足N<=100。
将u<v转化为u->v的边,u=v则并查集合为一点
假设只存在‘<’号,那么显然u点子树的方案:
枚举儿子节点 $v$ 的时候,我们用 $tol$ 表示已处理过的子树的总大小
$$f_u = f_u*f_v*C_{tol+f_v}^{f_v}$$
如果存在‘=’的话,显然=只会是不同子树的关系
由于子树间的等号关系不好处理,我们可以将其放到状态中,
我们记 $f_{u, k}$ 为在以 $u$ 为根的子树中生成的序列含有 $k$ 个 ‘<‘ 的方案数。
如果从当前已处理的子树选i个‘<‘,从v子树选j个’<‘
那么u子树的‘<‘个数范围为[max(i,j),i+j]
那么u子树’<‘的分布有多少种?
现在相当于将 $i$ 个白球, $j$ 个黑球放入 $k$ 个盒子中,且同个盒子不能有相同颜色的球,盒子不能空。
$$f_{u, k} += \sum_{i = 1}^a \sum_{j = 1}^b p_i*q_j*C_k^i*C_i^{j-(k-i)}$$
其中 $C_k^i$ 表示在 $k$ 个盒子中选出 $i$ 个放白球,因为所有盒子都要放球,所以剩下的 $k-i$ 个盒子必定放黑球,
剩下 $j-(k-i)$ 个黑球要放在 $i$ 个放白球的盒子中。
$$f_{u, k} += \sum_{i = 1}^a \sum_{j = 1}^b p_i*q_j*C_k^i*C_i^{j-(k-i)}$$
其中 $C_k^i$ 表示在 $k$ 个盒子中选出 $i$ 个放白球,因为所有盒子都要放球,所以剩下的 $k-i$ 个盒子必定放黑球,
剩下 $j-(k-i)$ 个黑球要放在 $i$ 个放白球的盒子中。
假设只存在‘<’号,那么显然u点子树的方案:
枚举儿子节点 $v$ 的时候,我们用 $tol$ 表示已处理过的子树的总大小
$$f_u = f_u*f_v*C_{tol+f_v}^{f_v}$$
如果存在‘=’的话,显然=只会是不同子树的关系
由于子树间的等号关系不好处理,我们可以将其放到状态中,
我们记 $f_{u, k}$ 为在以 $u$ 为根的子树中生成的序列含有 $k$ 个 ‘<‘ 的方案数。
如果从当前已处理的子树选i个‘<‘,从v子树选j个’<‘
那么u子树的‘<‘个数范围为[max(i,j),i+j]
那么u子树’<‘的分布有多少种?
现在相当于将 $i$ 个白球, $j$ 个黑球放入 $k$ 个盒子中,且同个盒子不能有相同颜色的球,盒子不能空。
$$f_{u, k} += \sum_{i = 1}^a \sum_{j = 1}^b p_i*q_j*C_k^i*C_i^{j-(k-i)}$$
其中 $C_k^i$ 表示在 $k$ 个盒子中选出 $i$ 个放白球,因为所有盒子都要放球,所以剩下的 $k-i$ 个盒子必定放黑球,
剩下 $j-(k-i)$ 个黑球要放在 $i$ 个放白球的盒子中。
$$f_{u, k} += \sum_{i = 1}^a \sum_{j = 1}^b p_i*q_j*C_k^i*C_i^{j-(k-i)}$$
其中 $C_k^i$ 表示在 $k$ 个盒子中选出 $i$ 个放白球,因为所有盒子都要放球,所以剩下的 $k-i$ 个盒子必定放黑球,
剩下 $j-(k-i)$ 个黑球要放在 $i$ 个放白球的盒子中。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6 using namespace std; 7 typedef long long lol; 8 struct Node 9 { 10 int next,to; 11 }edge[2001]; 12 int head[1001],num,set[1001],n,m,pre[1001],rt[1001]; 13 bool vis[1001]; 14 lol Mod=1e9+7,c[1001][1001],f[1001][1001],size[1001],ans; 15 void add(int u,int v) 16 { 17 num++; 18 edge[num].next=head[u]; 19 head[u]=num; 20 edge[num].to=v; 21 } 22 int find(int x) 23 { 24 if (x==0) return 0; 25 if (set[x]!=x) set[x]=find(set[x]); 26 return set[x]; 27 } 28 lol C(int x,int y) 29 { 30 return c[y][x]; 31 } 32 bool pd(int x) 33 {int i; 34 vis[x]=1; 35 for (i=head[x];i;i=edge[i].next) 36 {int v=edge[i].to; 37 if (vis[v]) return 0; 38 if (pd(v)==0) return 0; 39 } 40 return 1; 41 } 42 void dfs(int x) 43 {int i,j,k,l; 44 int zyys=0; 45 lol g[1001]; 46 for (i=head[x];i;i=edge[i].next) 47 { 48 int v=edge[i].to; 49 memset(g,0,sizeof(g)); 50 dfs(v); 51 if (zyys) 52 { 53 for (j=1;j<=size[x];j++) 54 { 55 for (k=1;k<=size[v];k++) 56 { 57 for (l=max(j,k);l<=j+k;l++) 58 { 59 g[l]+=(((f[x][j]*f[v][k])%Mod)*C(j,l)%Mod)*C(k-l+j,j)%Mod; 60 g[l]%=Mod; 61 } 62 } 63 } 64 size[x]+=size[v]; 65 for (j=1;j<=size[x];j++) 66 f[x][j]=g[j]; 67 } 68 else 69 { 70 zyys=1;size[x]+=size[v]; 71 for (j=1;j<=size[x];j++) 72 f[x][j]=f[v][j]; 73 } 74 } 75 if (!zyys) f[x][0]=1; 76 size[x]++; 77 for (i=size[x];i;i--) 78 f[x][i]=f[x][i-1]; 79 } 80 int main() 81 {int i,j,x,y; 82 char ch; 83 cin>>n>>m; 84 for (i=0;i<=n;i++) 85 { 86 c[i][0]=1; 87 for (j=1;j<=i;j++) 88 c[i][j]=(c[i-1][j-1]+c[i-1][j])%Mod; 89 } 90 for (i=1;i<=n;i++) 91 set[i]=i; 92 for (i=1;i<=m;i++) 93 { 94 scanf("%d %c %d",&x,&ch,&y); 95 if (ch==‘<‘) 96 { 97 pre[y]=x; 98 } 99 else if (ch==‘=‘) 100 { 101 int p=find(x),q=find(y); 102 if (p!=q) 103 { 104 set[p]=q;rt[p]=1; 105 pre[q]=max(pre[q],pre[p]); 106 } 107 } 108 } 109 for (i=1;i<=n;i++) 110 if (rt[i]==0) add(find(pre[i]),i); 111 for (i=0;i<=n;i++) 112 if (vis[i]==0) 113 if (pd(i)==0) 114 { 115 cout<<0<<endl; 116 return 0; 117 } 118 dfs(0); 119 for (i=1;i<=size[0];i++) 120 ans=(ans+f[0][i])%Mod; 121 cout<<ans; 122 }