HDU 4089 Activation:概率dp + 迭代手动消元

Posted Leohh

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 4089 Activation:概率dp + 迭代手动消元相关的知识,希望对你有一定的参考价值。

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4089

题意:

  有n个人在排队激活游戏,Tomato排在第m个。

  每次队列中的第一个人去激活游戏,有可能发生以下四种情况:

    (1)激活失败,继续留在队首,等待下一次激活。

    (2)连接失败,退到队尾。

    (3)激活成功,离开队列。

    (4)服务器瘫痪。

  发生的概率分别为p1,p2,p3,p4。

  问你服务器瘫痪时,Tomato的位置<=k的概率。

 

题解:

  表示状态:

    dp[i][j] = probability

    表示当前还有i个人在排队,Tomato在位置j。在这以及之后服务器瘫痪时,Tomato位置<=k的概率。

 

  找出答案:

    ans = dp[n][m]

 

  如何转移:

    按着四种情况分别写就好:

      (1)j == 1:  dp[i][1] = dp[i][1]*p1 + dp[i][i]*p2 + p4

      (2)2<=j<=k: dp[i][j] = dp[i][j]*p1 + dp[i][j-1]*p2 + dp[i-1][j-1]*p3 + p4

      (3)k<j<=i:  dp[i][j] = dp[i][j]*p1 + dp[i][j-1]*p2 + dp[i-1][j-1]*p3

    令p21 = p2/(1-p1), p31 = p3/(1-p1), p41 = p4/(1-p1)

    化简得:

      (1)j == 1:  dp[i][1] = dp[i][i]*p21 + p41

      (2)2<=j<=k: dp[i][j] = dp[i][j-1]*p21 + dp[i-1][j-1]*p31 + p41

      (3)k<j<=i:  dp[i][j] = dp[i][j-1]*p21 + dp[i-1][j-1]*p31

 

  边界条件:

    dp[1][1] = dp[1][1]*(p1+p2) + p4

    解得:dp[1][1] = p4/(1-p1-p2)

 

  然而这并没有结束……

  转移的时候显然先枚举i,在枚举j。

 

  可是j在当前的i中,是往两个方向转移的:

    dp[i][j]需要用到前面的dp[i][j-1],而dp[i][1]又用到了后面的dp[i][i]……QAQ

 

  所以迭代一下,先解出dp[i][1]:

    每一个dp[i][j]都可以表示成 dp[i][j] = p*dp[i][1] + c 的形式。

    显然对于最初的dp[i][1]: p = 1, c = 0

    对于后面的每一个dp[i][j]: p *= p21, c = c*p21 + dp[i-1][j-1]*p31 + (j<=k)*p41

    这样就由前一项的p和c,推出了当前的p和c。

    推啊推,直到推出了:dp[i][i] = p*dp[i][1] + c

    这时就可以代入解方程了:

      代入原来的递推式dp[i][1] = dp[i][i]*p21 + p41中

      得到:dp[i][1] = p21*(p*dp[i][1] + c) + p41

      解得:dp[i][1] = (p21*c + p41)/(1 - p*p21)

 

  然而还是没有结束……

  这题丧病卡空间……所以用滚动数组。

  由于转移的时候要用到dp[0][j]的0值,所以第一维MAX_N变成3,i=1,2轮流使用。

 

  这样就好啦~~~

 

AC Code:

 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string.h>
 4 #define MAX_N 2005
 5 #define cal(x) ((!(x))?0:(2-((x)&1)))
 6 
 7 using namespace std;
 8 
 9 int n,m,k;
10 double p1,p2,p3,p4;
11 double dp[3][MAX_N];
12 
13 int main()
14 {
15     memset(dp,0,sizeof(dp));
16     while(scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)!=EOF)
17     {
18         if(p4<1e-5)
19         {
20             printf("0.00000\n");
21             continue;
22         }
23         double p21=p2/(1-p1);
24         double p31=p3/(1-p1);
25         double p41=p4/(1-p1);
26         dp[cal(1)][1]=p4/(1-p1-p2);
27         for(int i=1;i<=n;i++)
28         {
29             if(i>1)
30             {
31                 double p=1.0,c=0;
32                 for(int j=2;j<=i;j++)
33                 {
34                     p*=p21;
35                     c=c*p21+dp[cal(i-1)][j-1]*p31;
36                     if(j<=k) c+=p41;
37                 }
38                 dp[cal(i)][1]=(c*p21+p41)/(1-p*p21);
39             }
40             for(int j=2;j<=i;j++)
41             {
42                 dp[cal(i)][j]=dp[cal(i)][j-1]*p21+dp[cal(i-1)][j-1]*p31;
43                 if(j<=k) dp[cal(i)][j]+=p41;
44             }
45         }
46         printf("%.5f\n",dp[cal(n)][m]);
47     }
48 }

 

以上是关于HDU 4089 Activation:概率dp + 迭代手动消元的主要内容,如果未能解决你的问题,请参考以下文章

HDU 4089 Activation:概率dp + 迭代手动消元

Activation(hdu 4089)

[HDU 4089] Activation

HDU4089/Uva1498 Activation 概率DP(好题)

hdu4087(概率dp)

期望DP[UVA1498] Activation