POJ 1742 Coins ( 经典多重部分和问题 && DP || 多重背包 )

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 1742 Coins ( 经典多重部分和问题 && DP || 多重背包 )相关的知识,希望对你有一定的参考价值。

题意 : 有 n 种面额的硬币,给出各种面额硬币的数量和和面额数,求最多能搭配出几种不超过 m 的金额?

 

分析 :

这题可用多重背包来解,但这里不讨论这种做法。

如果之前有接触过背包DP的可以自然想到DP数组的定义 ==> dp[i][j] 表示使用前 i 种硬币是否可以凑成面额 j 。

根据这样的定义,则一开始初始化 dp[0][0] = true 最后统计 dp[n][1 ~ m] 为 true 的数量即为答案

状态转移方程为 dp[i][j] |= dp[i-1][ j - k*val[i] ] ( k 表示取 k 个第 i 种硬币、val[i] 表示第 i 种硬币的面额 )

转移方程的意义不难理解,需要考虑当前的 dp[i][j] 可以从哪些状态转移而来,如下

使用第 i 种硬币刚好凑成 j 的值应当为上个状态( dp[i-1][] )合法的 j-val[i]、j-2*val[i]、j-3*val[i]....

故代码应当为一个如下所示的三重循环,但是复杂度较高无法通过这题.....

技术分享图片
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn = 111;

bool dp[maxn][100005];
int num[maxn], val[maxn];

int main(void)
{
    int N, C;
    while(~scanf("%d %d", &N, &C) && !(N==0 && C==0)){

        for(int i=1; i<=N; i++) scanf("%d", &val[i]);
        for(int i=1; i<=N; i++) scanf("%d", &num[i]);

        memset(dp, false, sizeof(dp));
        dp[0][0] = true;

        for(int i=1; i<=N; i++){
            for(int j=0; j<=C; j++){
                for(int k=0; k<=num[i] && k*val[i]<=j; k++){
                    dp[i][j] |= dp[i-1][j-k*val[i]];
                }
            }
        }

        printf("%d\\n", count(dp[N]+1, dp[N]+C+1, true));
    }
    return 0;
}
View Code

 

通常使用 dp 数组只记录布尔值是种浪费的做法,一般就去考虑在保证正确性的情况下改变 dp 含义记录更多信息去降低复杂度!

现将 dp 含义改变为 ==> dp[i][j] 表示用前 i 种硬币凑成 j 时第 i 种硬币最多还可以剩多少

挑战书上是直接给出了定义,但是我更乐于探寻这玩意是什么来的? 注:以下都是我自己的想法

想想上面的解法,好像会发现其实如果我当前考虑过 dp[i][j] = true 了,那么 dp[i][j+val[i]]、dp[i][j+2*val[i]]、dp[i][j+3*val[i]]... 应该都为 true 

而枚举 j 的顺序也恰好是从小到大,所以必定会枚举到 dp[i][j+val[i]]、dp[i][j+2*val[i]]...,所以何不写成如下这样

for(int i=1; i<=N; i++){
    for(int j=0; j<=C; j++){
        dp[j] |= dp[j-val[i]];
    }
}

运行了样例之后发现这样的做法得出的答案比标准答案更大!为什么?因为这样的做法没有考虑到数量,一种硬币的数量是有限的

所以当 j+k*val[i] 的 k 超过了规定数量的时候就会发生错误,使得一些本该为 false 的 dp 数组值变成了 true,所以我们需要记录数量!

技术分享图片

复杂度为 O(n*m) 在 POJ 上跑了 2016MS

技术分享图片
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn = 111;

int dp[100005];
int num[maxn], val[maxn];

bool fun(int x)
{ if(x>=0) return true; return false; }

int main(void)
{
    int N, C;
    while(~scanf("%d %d", &N, &C) && !(N==0 && C==0)){

        for(int i=1; i<=N; i++) scanf("%d", &val[i]);
        for(int i=1; i<=N; i++) scanf("%d", &num[i]);

        memset(dp, -1, sizeof(dp));
        dp[0] = 0;

        for(int i=1; i<=N; i++){
            for(int j=0; j<=C; j++){
                if(dp[j] >= 0) dp[j] = num[i];
                else if(j < val[i] || dp[j-val[i]] <= 0) dp[j] = -1;
                else dp[j] = dp[j-val[i]] - 1;
            }
        }

        printf("%d\\n", count_if(dp+1, dp+1+C, fun));
    }
    return 0;
}
View Code

 

以上是关于POJ 1742 Coins ( 经典多重部分和问题 && DP || 多重背包 )的主要内容,如果未能解决你的问题,请参考以下文章

poj1742 Coins多重背包贪心

POJ1742 Coins 多重背包+贪心

POJ 1742 Coins 多重背包DP

poj1742 Coins(多重背包+单调队列优化)

hdu 2844 poj 1742 Coins

poj1742 Coins