Leetcode总结之Union Find
Posted 我的名字叫周周
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Leetcode总结之Union Find相关的知识,希望对你有一定的参考价值。
package UnionFind; import java.util.ArrayList; import java.util.LinkedList; import java.util.List; public class UnionFindProblem { public static void main(String[] args) { // TODO Auto-generated method stub } /* * 网上查了一下:http://blog.csdn.net/dm_vincent/article/details/7655764 * 这个人写的不错,但是他是抄袭这个普林斯顿的教授的视频: * https://www.youtube.com/watch?v=H0bkmI1Xsxg&list=PLe-ggMe31CTexoNYnMhbHaWhQ0dvcy43t&index=2#t=379.668 * Union Find主要有两个部分,一个部分是Find Query,Check if two objects are in the same component. * 另一个部分是Union Command,也就是replace components containing two objects with their union. * 那么我们构建一个UF class * public class UF * UF(int N)------initialize with N object * void union(int p,int q)--------add connection between p and q * boolean connected(int p,int q)-------are p and q in the same component? * 那么如何来构建Data Structure呢? * Integer array id[] of size N and p and q are connected iff they have the same id. * 0 1 2 3 4 5 6 7 8 * id[] 0 1 1 8 8 0 0 1 8 8表明0,5,6相连的 * 那么Find就只需要看id相不相等,然后Union就相对来说比较复杂 * To Merge components containing p and q, change all entries whose id equals id[p] to id[q]. * id[] 1 1 1 8 8 1 1 1 8 8 after union of 6 and 1 */ public class QuickFindUF{ private int[] id; public QuickFindUF(int N){ id=new int[N]; for(int i=0;i<N;i++) id[i]=i; } public boolean connected(int p,int q){ return id[p]==id[q]; } public void union(int p,int q){ int pid=id[p]; int qid=id[q]; for(int i=0;i<id.length;i++) if(id[i]==pid) id[i]=qid; } /* * 那么我们能不能再把程序更进步一下吗?Quick-Union还是一样的ds,但是,这里id[i] is parent of i, * Root of i is id[id[id[..id[i]..]]].Keep going until it doesn‘t change * 0 1 2 3 4 5 6 7 8 9 * id[]0 1 9 4 9 6 6 7 8 9 * 0 1 9 6 7 8 * / \ | * 2 4 5 * | * 3 * 这里9,2,4,3在一起 * check if p and q have the same root * Union to merge components containing p and q, set the id of p‘s root to the id of q‘s root */ public class QuickUnionUF2{ private int[] id; public QuickUnionUF2(int N){ id=new int[N]; for(int i=0;i<N;i++) id[i]=i; } private int root(int i){ while(i!=id[i]) i=id[i];//一直找到最高的父节点 return i; } public boolean connected(int p,int q){ return root(p)==root(q); } public void union(int p,int q){ int i=root(p); int j=root(q); id[i]=j; } } } /* * 上面两种的比较, * initialize union find defect * quick-find N N 1 Union too expensive * quick-union N N N Find too expensive,tree are too tall * weightd QU N lgN lgN * 我们会发现如果用quick union的话树会非常的长,所以我们不能固定模式的union(a,b)一定是把b加到a的子树,我们 * 应该看ab树的大小,把小的放在大的下面,这样可以节省一部分查找时间 */ ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /* * 130. Surrounded Regions * 2016-4-3 by Mingyang * union 什么:所有从边界可达的O元素union在一起 * union 目的:union完成后那些没有在边界可达O集合中的O是需要翻转的 */ public void solve(char[][] board) { if (board == null || board.length == 0 || board[0].length == 0) return; int rows = board.length, cols = board[0].length; int oRoot = rows * cols; initUnionFind(rows * cols); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (board[i][j] == ‘X‘) continue; int curr = i * cols + j; if (i == 0 || i == rows - 1 || j == 0 || j == cols - 1) { union(curr, oRoot); } else { if (j + 1 < cols && board[i][j + 1] == ‘O‘) union(curr, i * cols + j + 1); if (j - 1 >= 0 && board[i][j - 1] == ‘O‘) union(curr, i * cols + j - 1); if (i + 1 < rows && board[i + 1][j] == ‘O‘) union(curr, (i + 1) * cols + j); if (i - 1 >= 0 && board[i - 1][j] == ‘O‘) union(curr, (i - 1) * cols + j); } } } for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (board[i][j] == ‘O‘ && find(i * cols + j) != oRoot) { board[i][j] = ‘X‘; } } } } int[] s; int[] rank; private void initUnionFind(int n) { s = new int[n + 1]; rank = new int[n + 1]; for (int i = 0; i <= n; i++) s[i] = i; rank[n] = n + 1; } private int find(int p) { if (s[p] == p) return p; else return s[p] = find(s[p]); } private void union(int p, int q) { int pRoot = find(p), qRoot = find(q); if (pRoot == qRoot) return; if (rank[pRoot] < rank[qRoot]) {//保证小的树在大的下面 s[pRoot] = qRoot; } else { if (rank[pRoot] == rank[qRoot]) rank[pRoot]++; s[qRoot] = pRoot; } } /* * 200.Number of Islands * 2016-4-3 by Mingyang * union 什么:两个相邻的1元素 * union 目的:union后计数union集合数量(通过计数union数组中根节点数量) */ class UF { public int count = 0; public int[] id = null; public UF(int m, int n, char[][] grid) { for(int i = 0; i < m; i++) { for(int j = 0; j < n; j++) { if(grid[i][j] == ‘1‘) count++; } } id = new int[m * n]; for(int i = 0; i < m * n; i++) { id[i] = i; } } public int find(int p) { while(p != id[p]) { id[p] = id[id[p]]; p = id[p]; } return p; } public boolean isConnected(int p, int q) { int pRoot = find(p); int qRoot = find(q); if(pRoot != qRoot) return false; else return true; } public void union(int p, int q) { int pRoot = find(p); int qRoot = find(q); if(pRoot == qRoot) return; id[pRoot] = qRoot; count--; } } public int numIslands(char[][] grid) { if(grid.length == 0 || grid[0].length == 0) return 0; int m = grid.length, n = grid[0].length; UF uf = new UF(m , n, grid); for(int i = 0; i < m; i++) { for(int j = 0; j < n; j++) { if(grid[i][j] == ‘0‘) continue; int p = i * n + j; int q; if(i > 0 && grid[i - 1][j] == ‘1‘) { q = p - n; uf.union(p, q); } if(i < m - 1 && grid[i + 1][j] == ‘1‘) { q = p + n; uf.union(p, q); } if(j > 0 && grid[i][j - 1] == ‘1‘) { q = p - 1; uf.union(p, q); } if(j < n - 1 && grid[i][j + 1] == ‘1‘) { q = p + 1; uf.union(p, q); } } } return uf.count; } //当然你也会觉得下面的可能更简单,那就是另外一种情况了, //设一个叫count的值,没遇到一个1,就把所有相连的1全部变为0,这样,到底遇到几次1,就是最终有几个小岛啦 public int numIslands2(char[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) return 0; int count = 0; for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (grid[i][j] == ‘1‘) { count++; dfs(grid, i, j); } } } return count; } public void dfs(char[][] grid, int i, int j) { // validity checking if (i < 0 || j < 0 || i > grid.length - 1 || j > grid[0].length - 1) return; // if current cell is water or visited if (grid[i][j] != ‘1‘) return; // set visited cell to ‘0‘ grid[i][j] = ‘0‘; // merge all adjacent land dfs(grid, i - 1, j); dfs(grid, i + 1, j); dfs(grid, i, j - 1); dfs(grid, i, j + 1); } /* * 261.Graph Valid Tree * 2016-4-3 by Mingyang * 我们在Graph里面用其他方法做了一下这里我们再用并查集来做 * union 什么:一条边的两个顶点 * union 目的:若union两个顶点时发现根一样,说明已经在同一棵树中, * 说明输入graph存在环,非tree;union结束后,计数有多少个不同的根,当且仅当存在一个根时事vaild tree */ public boolean validTree(int n, int[][] edges) { UnionFind uf = new UnionFind(n); for(int i = 0; i < edges.length; i++){ // 如果两个节点已经在同一集合中,说明新的边将产生环路 if(!uf.union(edges[i][0], edges[i][1])){ return false; } } return uf.count() == 1; } public class UnionFind { int[] ids; int cnt; public UnionFind(int size){ this.ids = new int[size]; //初始化并查集,每个节点对应自己的集合号 for(int i = 0; i < this.ids.length; i++){ this.ids[i] = i; } this.cnt = size; } public boolean union(int m, int n){ int src = find(m); int dst = find(n); //如果两个节点不在同一集合中,将两个集合合并为一个 if(src != dst){ for(int i = 0; i < ids.length; i++){ if(ids[i] == src){ ids[i] = dst; } } // 合并完集合后,集合数减一 cnt--; return true; } else { return false; } } public int find(int m){ return ids[m]; } public int count(){ return cnt; } } /* * 305 Number of Islands II * 2016-4-3 by Mingyang * Given a n,m which means the row and column of the 2D matrix and an array of pair A( size k ). * Originally, the 2D matrix is all 0 which means there is only sea in the matrix. * The list pair has k operator and each operator has two integer A[i].x, A[i].y means * that you can change the grid matrix[A[i].x][A[i].y] from sea to island. * Return how many island are there in the matrix after each operator. */ private int[][] dir = {{0, 1}, {0, -1}, {-1, 0}, {1, 0}}; public List<Integer> numIslands2(int m, int n, int[][] positions) { UnionFind2D islands = new UnionFind2D(m, n); List<Integer> ans = new ArrayList<Integer>(); for (int[] position : positions) { int x = position[0], y = position[1]; int p = islands.add(x, y); for (int[] d : dir) { int q = islands.getID(x + d[0], y + d[1]); if (q > 0 && !islands.find(p, q)) islands.unite(p, q); } ans.add(islands.size()); } return ans; } } class UnionFind2D { private int[] id; private int[] sz; private int m, n, count; public UnionFind2D(int m, int n) { this.count = 0; this.n = n; this.m = m; this.id = new int[m * n + 1]; this.sz = new int[m * n + 1]; } public int index(int x, int y) { return x * n + y + 1; } public int size() { return this.count; } public int getID(int x, int y) { if (0 <= x && x < m && 0<= y && y < n) return id[index(x, y)]; return 0; } public int add(int x, int y) { int i = index(x, y); id[i] = i; sz[i] = 1; ++count; return i; } public boolean find(int p, int q) { return root(p) == root(q); } public void unite(int p, int q) { int i = root(p), j = root(q); if (sz[i] < sz[j]) { //weighted quick union id[i] = j; sz[j] += sz[i]; } else { id[j] = i; sz[i] += sz[j]; } --count; } private int root(int i) { for (;i != id[i]; i = id[i]) id[i] = id[id[i]]; //path compression return i; } }
以上是关于Leetcode总结之Union Find的主要内容,如果未能解决你的问题,请参考以下文章