yarn 原理

Posted hongma

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了yarn 原理相关的知识,希望对你有一定的参考价值。

产生背景

直接源于MRv1在几个方面的缺陷
  • 扩展性受限(NameNode,JobTracker设计为单一节点,内存容量有限)
  • 单点故障
  • 难以支持MR之外的计算
  • slot数目无法动态修改,Map slot,Reduce slot不能共享
    

优点:

  • 将资源管理和作业控制分离,减小JobTracker压力
  • 能够支持不同的计算框架
  • 资源管理更加合理
 
 

缺点:

  • 各个应用无法感知集群整体资源的使用情况,只能等待上层调度推送信息。
  • 资源分配采用轮询、ResourceOffer机制(mesos),在分配过程中使用悲观锁,并发粒度小。
  • 缺乏一种有效的竞争或优先抢占的机制。
 
 
YARN容错性
ResourceManager
        存在单点故障;
        正在基于ZooKeeper实现HA。
NodeManager
        失败后,RM将失败任务告诉对应的AM;
        AM决定如何处理失败的任务。
ApplicationMaster
        失败后,由RM负责重启;
        AM需处理内部任务的容错问题;
        RMAppMaster会保存已经运行完成的Task,重启后无需重新运行。
YARN调度框架
    双层调度框架
        RM将资源分配给AM
        AM将资源进一步分配给各个Task
 
 
YARN资源调度器
    多类型资源调度
        采用DRF算法(论文:“Dominant Resource Fairness: Fair Allocation of Multiple Resource Types”)
        目前支持CPU和内存两种资源
    提供多种资源调度器
        FIFO
        Fair Scheduler
        Capacity Scheduler
    多租户资源调度器
        支持资源按比例分配
        支持层级队列划分方式
        支持资源抢占
 
YARN资源隔离方案
    支持内存和CPU两种资源隔离
        内存是一种“决定生死”的资源
        CPU是一种“影响快慢”的资源
    内存隔离
        基于线程监控的方案
        基于Cgroups的方案
    CPU隔离
        默认不对CPU资源进行隔离
        基于Cgroups的方案
YARN支持的调度语义
    支持的语义
        请求某个特定节点/机架上的特定资源量
        将某些节点加入(或移除)黑名单,不再为自己分配这些节点上的资源
        请求归还某些资源
    不支持的语义
        请求任意节点/机架上的特定资源量
        请求一组或几组符合某种特质的资源
        超细粒度资源
        动态调整Container资源
 
运行在YARN上的计算框架 (还有别的)
        离线计算框架:MapReduce
        DAG计算框架:Tez
        流式计算框架:Storm
        内存计算框架:Spark
 
 
 
DAG计算框架:Apache Tez 
    DAG计算:多个作业之间存在数据依赖关系,并形成一个依赖关系有向图( Directed Acyclic Graph ),该图的计算称为“DAG计算”
 
 
 

1.1 YARN 基本架构

YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。

其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

 

1.2 YARN基本组成结构

YARN总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManager负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以跟踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManger启动可以占用一定资源的任务。由于不同的ApplicationMaster被分布到不同的节点上,因此它们之间不会相互影响。在本小节中,我们将对YARN的基本组成结构进行介绍。

图2-9描述了YARN的基本组成结构,YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

 

1.ResourceManager(RM)

RM是一个全局的资源管理器,负责整个系统的资源管理和分配。注:RM只负责监控AM,在AM运行失败时候启动它,RM并不负责AM内部任务的容错,这由AM来完成

它主要由两个组件构成:调度器(Scheduler)应用程序管理器(Applications Manager,ASM)。

(1)调度器

调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。

需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。

 

(2) 应用程序管理器

应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。

 

2. ApplicationMaster(AM)

用户提交的每个应用程序均包含1个AM,主要功能包括:

与RM调度器协商以获取资源(用Container表示);

将得到的任务进一步分配给内部的任务;

与NM通信以启动/停止任务;

监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

当前YARN自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster

3. NodeManager(NM)

NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求

4. Container

Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。

需要注意的是,Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。

截至本书完成时,YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。

 

1.3  YARN工作流程

当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:

第一个阶段是启动ApplicationMaster;

第二个阶段是由ApplicationMaster创建应用程序,为它申请资源,并监控它的整个运行过程,直到运行完成。

如图2-11所示,YARN的工作流程分为以下几个步骤:

 

步骤1 用户向YARN中提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。

步骤2 ResourceManager为该应用程序分配第一个Container,并与对应的Node-Manager通信,要求它在这个Container中启动应用程序的ApplicationMaster。

步骤3 ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManager查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束,即重复步骤4~7。

步骤4 ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源。

步骤5 一旦ApplicationMaster申请到资源后,便与对应的NodeManager通信,要求它启动任务。

步骤6 NodeManager为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务。

步骤7 各个任务通过某个RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

     在应用程序运行过程中,用户可随时通过RPC向ApplicationMaster查询应用程序的当前运行状态。 

步骤8 应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

 

1.4 多角度理解YARN

可将YARN看做一个云操作系统,它负责为应用程序启动ApplicationMaster(相当于主线程),然后再由ApplicationMaster负责数据切分、任务分配、启动和监控等工作,而由ApplicationMaster启动的各个Task(相当于子线程)仅负责自己的计算任务。当所有任务计算完成后,ApplicationMaster认为应用程序运行完成,然后退出。

   

 

 

以上是关于yarn 原理的主要内容,如果未能解决你的问题,请参考以下文章

YARN原理介绍

Hadoop — Yarn原理解析

大数据基础总结---MapReduce和YARN技术原理

Yarn原理

深入YARN系列1:窥全貌之YARN架构,设计,通信原理等

深入YARN系列1:窥全貌之YARN架构,设计,通信原理等