Spark 算子
Posted csguo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark 算子相关的知识,希望对你有一定的参考价值。
RDD算子分类,大致可以分为两类,即:
-
Transformation:转换算子,这类转换并不触发提交作业,完成作业中间过程处理。
-
Action:行动算子,这类算子会触发SparkContext提交Job作业。
一:Transformation:转换算子
1.map
map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。
举例:
scala> val a = sc.parallelize(1 to 9, 3)
scala> val b = a.map(x => x*2)
scala> a.collect
res10: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> b.collect
res11: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18)
- 1
- 2
- 3
- 4
- 5
- 6
上述例子中把原RDD中每个元素都乘以2来产生一个新的RDD。
2.mapPartitions
mapPartitions是map的一个变种。map的输入函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区,也就是把每个分区中的内容作为整体来处理的。
它的函数定义为:
def mapPartitions[U: ClassTag](f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]
f即为输入函数,它处理每个分区里面的内容。每个分区中的内容将以Iterator[T]传递给输入函数f,f的输出结果是Iterator[U]。最终的RDD由所有分区经过输入函数处理后的结果合并起来的。
举例:
scala> val a = sc.parallelize(1 to 9, 3)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at :27
scala> a.collect
res11: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> var c = a.mapPartitions( a=>a.filter(_>=7) )
c: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[11] at mapPartitions at :29
scala> c.collect
res12: Array[Int] = Array(7, 8, 9)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
上述例子是通过函数filter对分区中所有数据进行过滤
mapPartitions还有些变种,比如mapPartitionsWithContext,它能把处理过程中的一些状态信息传递给用户指定的输入函数。还有mapPartitionsWithIndex,它能把分区的index传递给用户指定的输入函数。
3.mapValues
mapValues顾名思义就是输入函数应用于RDD中Kev-Value的Value,原RDD中的Key保持不变,与新的Value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD。
举例:
scala> val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2)
scala> val b = a.map(x => (x.length, x))
scala> b.mapValues("x" + _ + "x").collect
res5: Array[(Int, String)] = Array((3,xdogx), (5,xtigerx), (4,xlionx),(3,xcatx), (7,xpantherx), (5,xeaglex))
- 1
- 2
- 3
- 4
4.mapWith
mapWith是map的另外一个变种,map只需要一个输入函数,而mapWith有两个输入函数。它的定义如下:
def mapWith[A: ClassTag, U: ](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => U): RDD[U]
第一个函数constructA是把RDD的partition index(index从0开始)作为输入,输出为新类型A;
第二个函数f是把二元组(T, A)作为输入(其中T为原RDD中的元素,A为第一个函数的输出),输出类型为U。
举例:把partition index 乘以10,然后加上2作为新的RDD的元素。
val x = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10), 3)
x.mapWith(a => a * 10)((a, b) => (b + 2)).collect
res4: Array[Int] = Array(2, 2, 2, 12, 12, 12, 22, 22, 22, 22)
- 1
- 2
- 3
5.flatMap
与map类似,区别是原RDD中的元素经map处理后只能生成一个元素,而原RDD中的元素经flatmap处理后可生成多个元素来构建新RDD。
举例:对原RDD中的每个元素x产生y个元素(从1到y,y为元素x的值)
scala> val a = sc.parallelize(1 to 4, 2)
scala> val b = a.flatMap(x => 1 to x)
scala> b.collect
res12: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4)
- 1
- 2
- 3
- 4
6.flatMapWith
flatMapWith与mapWith很类似,都是接收两个函数,一个函数把partitionIndex作为输入,输出是一个新类型A;另外一个函数是以二元组(T,A)作为输入,输出为一个序列,这些序列里面的元素组成了新的RDD。它的定义如下:
def flatMapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => Seq[U]): RDD[U]
举例:
scala> val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 3)
scala> a.flatMapWith(x => x, true)((x, y) => List(y, x)).collect
res58: Array[Int] = Array(0, 1, 0, 2, 0, 3, 1, 4, 1, 5, 1, 6, 2, 7, 2,
8, 2, 9)
- 1
- 2
- 3
- 4
7.flatMapValues
flatMapValues类似于mapValues,不同的在于flatMapValues应用于元素为KV对的RDD中Value。每个一元素的Value被输入函数映射为一系列的值,然后这些值再与原RDD中的Key组成一系列新的KV对。
举例
scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> val b = a.flatMapValues(x=>x.to(5))
scala> b.collect
res3: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (3,4), (3,5))
- 1
- 2
- 3
- 4
上述例子中原RDD中每个元素的值被转换为一个序列(从其当前值到5),比如第一个KV对(1,2), 其值2被转换为2,3,4,5。然后其再与原KV对中Key组成一系列新的KV对(1,2),(1,3),(1,4),(1,5)。
8.reduce
reduce将RDD中元素两两传递给输入函数,同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止。
举例
scala> val c = sc.parallelize(1 to 10)
scala> c.reduce((x, y) => x + y)
res4: Int = 55
- 1
- 2
- 3
上述例子对RDD中的元素求和。
9.reduceByKey
顾名思义,reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行reduce,因此,Key相同的多个元素的值被reduce为一个值,然后与原RDD中的Key组成一个新的KV对。
举例:
scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> a.reduceByKey((x,y) => x + y).collect
res7: Array[(Int, Int)] = Array((1,2), (3,10))
- 1
- 2
- 3
上述例子中,对Key相同的元素的值求和,因此Key为3的两个元素被转为了(3,10)。
10.cartesian:
对两个RDD内的所有元素进行笛卡尔积操作(耗内存),内部实现返回CartesianRDD。
scala> val a = sc.parallelize(List(1,2,3))
scala> val b = sc.parallelize(List(4,5,6))
scala> val c = a.cartesian(b)
scala> c.collect
res15: Array[(Int, Int)] = Array((1,4), (1,5), (1,6), (2,4), (3,4), (2,5), (2,6), (3,5), (3,6))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
11 Sample:
sample将RDD这个集合内的元素进行采样,获取所有元素的子集。用户可以设定是否有有放回的抽样,百分比,随机种子,进而决定采样方式。
内部实现: SampledRDD(withReplacement,fraction,seed)。
函数参数设置:
withReplacement=true,表示有放回的抽样。
withReplacement=false,表示无放回的抽样。
根据fraction指定的比例,对数据进行采样,可以选择是否用随机数进行替换,seed用于指定随机数生成器种子。
随机函数产生的是一种伪随机数,它实际是一种序列发生器,有固定的算法,只有当种子不同时,序列才不同,所以不应该把种子固定在程序中,应该用随机产生的数做种子,如程序运行时的时间等。
以c++为例,应先用srand()设置不同种子,否则每次调用rand()得到的值是一样的。
scala> val a = sc.parallelize(1 to 100,3)
scala> a.sample(false,0.1,0).count
res16: Long = 12
scala> a.sample(false,0.1,0).collect
res17: Array[Int] = Array(10, 47, 55, 73, 76, 84, 87, 88, 91, 92, 95, 98)
scala> a.sample(true,0.7,scala.util.Random.nextInt(10000)).count
res19: Long = 75
scala> a.sample(true,0.7,scala.util.Random.nextInt(10000)).collect
res20: Array[Int] = Array(1, 3, 3, 3, 5, 6, 9, 9, 9, 9, 10, 10, 15, 17, 20, 23, 23, 27, 28, 31, 32, 32, 34, 35, 36, 36, 36, 36, 38, 39, 41, 42, 42, 43, 45, 47, 49, 49, 50, 50, 51, 51, 54, 55, 55, 57, 57, 57, 57, 57, 59, 59, 61, 61, 63, 67, 72, 74, 76, 76, 80, 80, 81, 81, 81, 82, 83, 85, 87, 88, 90, 93, 95, 96, 97, 97, 99, 100)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
12 union:
使用union函数时需要保证两个RDD元素的数据类型相同,返回的RDD数据类型和被合并的RDD元素数据类型相同。并不进行去重操作,保存所有的元素,如果想去重,可以使用distinct()。同时,spark还提供更为简洁的使用union的API,即通过++符号相当于union函数操作。
eg: a 与 b 的联合
scala> val a = sc.parallelize(List(("A",1),("B",2),("c",3),("A",4),("C",5) ))
scala> val b = sc.parallelize(List(("A",5),("B",6),("A",4),("C",9) ))
scala> a.union(b).collect
res22: Array[(String, Int)] = Array((A,1), (B,2), (c,3), (A,4), (C,5), (A,5), (B,6), (A,4), (C,9))
- 1
- 2
- 3
- 4
- 5
- 6
去重复:
scala> val d = sc.parallelize(List(("A",5),("B",6),("A",5) ))
scala> d.distinct.collect
res25: Array[(String, Int)] = Array((B,6), (A,5))
- 1
- 2
- 3
- 4
13 groupByKey:
将元素通过函数生成相应的Key,数据就转化为Key-Value格式,之后将Key相同的元素分为一组。
eg:根据数据集中的每个元素的K值对数据分组
scala> val a = sc.parallelize(List(("A",1),("B",2),("c",3),("A",4),("C",5) ))
scala> a.groupByKey().collect
res21: Array[(String, Iterable[Int])] = Array((B,CompactBuffer(2)), (A,CompactBuffer(1, 4)), (C,CompactBuffer(5)), (c,CompactBuffer(3)))
- 1
- 2
- 3
- 4
14 join:
join对两个需要连接的RDD进行cogroup函数操作,将相同key的数据能偶放到一个分区,在cgroup操作之后形成新RDD对每个key下的元素进行笛卡尔积的操作,返回的结果在展平,对应key下的所有元组形成一个集合。最后返回 RDD[(K, (V, W))]。
eg:a与b两个数据连接,相当于表的关联
scala> val a = sc.parallelize(List(("A",1),("B",2),("c",3),("A",4),("C",5) ))
scala> val b = sc.parallelize(List(("A",5),("B",6),("A",4),("C",9) ))
scala> a.join(b).collect
res23: Array[(String, (Int, Int))] = Array((B,(2,6)), (A,(1,5)), (A,(1,4)), (A,(4,5)), (A,(4,4)), (C,(5,9)))
- 1
- 2
- 3
- 4
- 5
- 6
15 cache:
cache将RDD元素从磁盘缓存到内存。相当于 persist(MEMORY_ONLY) 函数的
功能。
16 persist:
persist函数对RDD进行缓存操作,数据缓存在哪里,由StorageLevel这个枚举类型进行确定。DISK 代表磁盘,MEMORY 代表内存, SER 代表数据是否进行序列化存储。
函数定义: persist(newLevel:StorageLevel)
StorageLevel 是枚举类型,代表存储模式。
MEMORY_AND_DISK_SER 代表数据可以存储在内存和磁盘,并且以序列化的方式存储,其他同理。
二:Action:行动算子
1.foreach:
foreach对RDD中的每个元素都应用f函数操作,不返回 RDD 和 Array, 而是返回Uint。
2.saveAsTextFile:
函数将数据输出,存储到 HDFS 的指定目录。
函数的内 部实现,其内部通过调用 saveAsHadoopFile 进行实现:
this.map(x => (NullWritable.get(), new Text(x.toString))) .saveAsHadoopFileTextOutputFormat[NullWritable, Text]
将 RDD 中的每个元素映射转变为 (null, x.toString),然后再将其写入 HDFS。
3 collect:
collect相当于toArray,不过已经过时不推荐使用,collect将分布式的RDD返回为一个单机的scala Array数据,在这个数组上运用 scala 的函数式操作。
4.count:
count返回整个RDD的元素个数。
scala> val a = sc.parallelize(1 to 10 )
scala> a.collect
res9: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
scala> a.count
res10: Long = 10
以上是关于Spark 算子的主要内容,如果未能解决你的问题,请参考以下文章
Spark算子篇 --Spark算子之combineByKey详解
spark的做算子统计的Java代码(在Linux系统集群式运行)