基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测
Posted 将者,智、信、仁、勇、严也。
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测相关的知识,希望对你有一定的参考价值。
话题 3: 基于深度学习的二进制恶意样本检测
分享主题:全球正在经历一场由科技驱动的数字化转型,传统技术已经不能适应病毒数量飞速增长的发展态势。而基于沙箱的检测方案无法满足 APT 攻击的检测需求,也受到多种反沙箱技术的干扰。在充分考察过各种技术方案的优劣后,瀚思科技开发出了基于深度学习的二进制病毒样本检测技术,可以做到沙箱同等水平的 99% 的检测准确率,而误报率低于 1/1000。基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测。极大的简化了病毒检测流程,速度更是远超沙箱技术,可以做到日均百万样本的检测量。由于深度学习是自动抽取数千万样本的海量特征,使得我们的深度学习模型具有极强的通用性,即使数月不更新,也能做到大于 90% 的检测率。
瀚思的安全产品做的。
以上是关于基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测的主要内容,如果未能解决你的问题,请参考以下文章
深度学习与图神经网络核心技术实践应用高级研修班-Day1小样本学习与元学习