POJ1177 Picture —— 求矩形并的周长 线段树 + 扫描线 + 离散化
Posted h_z_cong
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ1177 Picture —— 求矩形并的周长 线段树 + 扫描线 + 离散化相关的知识,希望对你有一定的参考价值。
题目链接:https://vjudge.net/problem/POJ-1177
A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter.
Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.
The corresponding boundary is the whole set of line segments drawn in Figure 2.
The vertices of all rectangles have integer coordinates.
Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.
The corresponding boundary is the whole set of line segments drawn in Figure 2.
The vertices of all rectangles have integer coordinates.
Input
Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate.
0 <= number of rectangles < 5000
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.
0 <= number of rectangles < 5000
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.
Output
Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.
Sample Input
7 -15 0 5 10 -5 8 20 25 15 -4 24 14 0 -6 16 4 2 15 10 22 30 10 36 20 34 0 40 16
Sample Output
228
题解:
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const double EPS = 1e-8; 15 const int INF = 2e9; 16 const LL LNF = 2e18; 17 const int MAXN = 1e4+10; 18 19 struct line 20 { 21 int le, ri, h; 22 int id; 23 bool operator<(const line &a)const{ 24 return h<a.h; 25 } 26 }Line[MAXN]; 27 28 //X用于离散化横坐标,times为此区间被覆盖的次数,block为有多少块子区间, len为被覆盖的长度 29 int X[MAXN<<1], times[MAXN<<2], block[MAXN<<2], len[MAXN]; 30 bool usedl[MAXN<<2], usedr[MAXN<<2]; 31 //usedl用于表示区间的左端是否被覆盖, usedr亦如此 32 33 void push_up(int u, int l, int r) 34 { 35 if(times[u]>0) //该区间有被覆盖 36 { 37 len[u] = X[r] - X[l]; 38 block[u] = 1; 39 usedl[u] = usedr[u] = true; 40 } 41 else //该区间没有被覆盖 42 { 43 if(l+1==r) //该区间为单位区间 44 { 45 len[u] = 0; 46 block[u] = 0; 47 usedl[u] = usedr[u] = false; 48 } 49 else //该区间至少包含两个单位区间 50 { 51 len[u] = len[u*2] + len[u*2+1]; 52 block[u] = block[u*2] + block[u*2+1]; 53 if(usedr[u*2] && usedl[u*2+1]) //如果左半区间的右端与右半区间的左端均被覆盖,则他们合成一个子区间 54 block[u]--; 55 usedl[u] = usedl[u*2]; 56 usedr[u] = usedr[u*2+1]; 57 } 58 } 59 } 60 61 void add(int u, int l, int r, int x, int y, int v) 62 { 63 if(x<=l && r<=y) 64 { 65 times[u] += v; 66 push_up(u, l, r); 67 return; 68 } 69 70 int mid = (l+r)>>1; 71 if(x<=mid-1) add(u*2, l, mid, x, y, v); 72 if(y>=mid+1) add(u*2+1, mid, r, x, y, v); 73 push_up(u, l, r); 74 } 75 76 int main() 77 { 78 int n; 79 while(scanf("%d", &n)!=EOF) 80 { 81 for(int i = 1; i<=n; i++) 82 { 83 int x1, y1, x2, y2; 84 scanf("%d%d%d%d", &x1, &y1, &x2, &y2); 85 Line[i].le = Line[i+n].le = x1; 86 Line[i].ri = Line[i+n].ri = x2; 87 Line[i].h = y1; Line[i+n].h = y2; 88 Line[i].id = 1; Line[i+n].id = -1; 89 X[i] = x1; X[i+n] = x2; 90 } 91 92 sort(Line+1, Line+1+2*n); 93 sort(X+1, X+1+2*n); 94 int m = unique(X+1, X+1+2*n) - (X+1); 95 96 memset(times, 0, sizeof(times)); 97 memset(len, 0, sizeof(len)); 98 memset(block, 0, sizeof(block)); 99 memset(usedl, false, sizeof(usedl)); 100 memset(usedr, false, sizeof(usedr)); 101 102 int ans = 0, pre_len = 0; 103 Line[2*n+1].h = Line[2*n].h; //边界条件 104 for(int i = 1; i<=2*n; i++) 105 { 106 int l = upper_bound(X+1, X+1+m, Line[i].le) - (X+1); 107 int r = upper_bound(X+1, X+1+m, Line[i].ri) - (X+1); 108 add(1, 1, m, l, r, Line[i].id); 109 ans += abs(len[1] - pre_len); 110 ans += 2*block[1]*(Line[i+1].h-Line[i].h); 111 pre_len = len[1]; 112 } 113 114 printf("%d\n", ans); 115 } 116 }
以上是关于POJ1177 Picture —— 求矩形并的周长 线段树 + 扫描线 + 离散化的主要内容,如果未能解决你的问题,请参考以下文章
HDOJ1828&&POJ1177Picture(线段树,扫描线)
POJ 1177 Picture(线段树:扫描线求轮廓周长)