機器學習基石 机器学习基石 (Machine Learining Foundations) 作业2 Q16-18 C++实现
Posted Mac Jiang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了機器學習基石 机器学习基石 (Machine Learining Foundations) 作业2 Q16-18 C++实现相关的知识,希望对你有一定的参考价值。
大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业2 Q16-18的C++实现。虽然有很多大神已经在很多博客中给出了Phython的实现,但是给出C++实现的文章明显较少,这里为大家提供一条C++实现的思路!我的代码虽然能够得到正确答案,但是其中可能有某些思想或者细节是错误的,如果各位博友发现,请及时留言纠正,谢谢!再次声明,博主提供实现代码的原因不是为了让各位通过测试,而是为学习有困难的同学提供一条解决思路,希望我的文章对您的学习有一些帮助!
本文出处:http://blog.csdn.net/a1015553840/article/details/51023193
其他解答看汇总帖:http://blog.csdn.net/a1015553840/article/details/51085129
1.第16题
(1)题意:这道题说的是“positive and negative rays”,这种分类方法在老师课堂中已经分析过了,mH(N)=2N。我们在区间[-1,1]上取若干个点(17题为20个),这20个点将[-1,1]分成21个区间,theta可以取21个区间内任意一个,加上s的取值可以为-1或者1,共有21*2=42种组合方式。分别对这42种hyphothesis计算h(x),计算他与y的区别,即E_in,选择这42种组合最小E_in,把这个hyphothesis作为最佳理论,通过他计E_out。
(2)分析:由第一题我们知道加噪声后的计算方式是此式子。对于这道题我们加20%噪声,所以lambda = 0.8,我们只要求mu就可以了。mu的定义是h(x)与f(x)的不同,即错误率。f(x)=s(x)=sign(x)已经在给出,h(x)=s*sign(x-theta)在题中也给出了,所以我们需要根据s和theta分类讨论
1.s = 1, theta > 0:错误率为theta/2
2.s=1,theta < 0;错误率为|theta|/2
3.s=-1,theta > 0:错误率为 (2 - theta)/2
4.s=-1,theta <0:错误率为(2- | theta |)/2
综上,s=1 错误率为 |theta|/2;s = -1,错误率为(2-|theta|)/2
利用一个式子写出来: mu = (s+1)/2 * (|theta|/2) - (s-1)/2 * ((2-|theta|)/2)
最后 E_out = mu * lambda + (1 - lambda) * (1 - mu),lambda = 0.8,mu带入可以得到答案
(3)答案:0.5+0.3*s*(|theta| - 1)
2.第17,18题
(1)题意:
第17题的意思是在[-1,1]种取20个点,分隔为21个区间作为theta的取值区间,每种分类有42个hyphothesis,枚举所有可能情况找到使E_in最小的hyphothesis,记录最小E_in
第18题的意思是在17题得到的最佳hyphothesis的基础上,利用第16题的公式计算E_out.
(2)实现代码
#include<iostream>
#include<stdlib.h>
#include<vector>
#include<algorithm>
#include<math.h>
using namespace std;
#define DATASIZE 20 //定义[-1,1]的内点的数目
//训练样本结构体
struct record{
double x;
int y;
};
//hyphothesis的结构体,s为+1或-1,theta在20个点分隔的21个区间取值
struct hyphothesis{
int s;
double theta;
};
//sign函数
int sign(double x){
if(x <= 0)return -1;
else return 1;
}
//随机在[-1,1]内生成DATASIZE个点的x,并计算对应的y
void getRandData(vector<record> &trainingData){
int i;
for(i = 0; i < DATASIZE; i++){
record temp;
temp.x = 2.0 * rand() / double(RAND_MAX) - 1.0;
temp.y = sign(temp.x);
trainingData.push_back(temp);
}
}
//添加噪声,即把20%的点的y值正负号颠倒。这里的20%可以通过随机方法得到[0,1]的数,若小于0.2则认为这个点加噪声
void getNoise(vector<record> &trainingData){
int i;
for(i = 0; i < DATASIZE; i++){
double randnum = rand() / double(RAND_MAX);
if(randnum < 0.2)
trainingData[i].y = -1 * trainingData[i].y;
}
}
//自己定义的比较方法,用于sort
bool myCompare( record &v1, record &v2){
return v1.x < v2.x;
}
//对MAXSIZE = 20个样本按X进行排序,这里直接调用自带sort函数,第三个参数是自己定义的比较方法(C++并不认识record,不知道怎么比较,我们要定义mycompare告诉他)
void sortTrainingData(vector<record> &trainingData){
sort(trainingData.begin(),trainingData.end(),myCompare);
}
//给定输入集合和指定的hyphothesis计算对应的错误率
double calculateError(vector<record> &trainingData,hyphothesis &h){
int i;
int error = 0;
for(i = 0; i < DATASIZE; i++){
int temp = h.s * sign(trainingData[i].x - h.theta);
if(temp != trainingData[i].y)error++;
}
return error/double(DATASIZE);
}
//由于S = 1 or -1,theta取值有21中,共有42中hyphothesis,我们计算得42种中最小的为E_in,并记录此时最小错误和对应的hyphothesis
double E_in(vector<record> &trainingData,hyphothesis &bestH){
hyphothesis temp;
double min_errorRate = 1.0;
int i;
//s = 1时
for(i = 0; i < DATASIZE+1; i++){
temp.s = 1;
if(i == 0)temp.theta = trainingData[0].x -1.0;//theta取值,theta小于最小
else if(i == DATASIZE) temp.theta = trainingData[DATASIZE - 1].x + 1.0;//theta取值在两点之间
else temp.theta = (trainingData[i-1].x + trainingData[i].x) / 2.0;//theta取值大于最大
double errorRate = calculateError(trainingData,temp);//如果此hyphothesis的错误更小,则替代
if(errorRate < min_errorRate){
bestH = temp;
min_errorRate = errorRate;
}
}
//s = -1时
for(i = 0; i < DATASIZE+1; i++){
temp.s = -1;
if(i == 0)temp.theta = trainingData[0].x -1.0;
else if(i == DATASIZE) temp.theta = trainingData[DATASIZE - 1].x + 1.0;
else temp.theta = (trainingData[i-1].x + trainingData[i].x) / 2.0;
double errorRate = calculateError(trainingData,temp);
if(errorRate < min_errorRate){
bestH = temp;
min_errorRate = errorRate;
}
}
return min_errorRate;
}
//利用16题得到的公式计算E_out,注意,浮点数求绝对值用fabs,而不是abs
double E_out(hyphothesis &bestH){
return 0.5 + 0.3 * double(bestH.s) * (double)(fabs(bestH.theta) - 1.0);
}
void main(){
int i;
double totalE_inRate = 0.0;
double totalE_outRate = 0.0;
int seed[5000];//由于要进行5000次求平均,所以要有5000个种子用于求随机数
int j;
for( j = 0; j < 5000; j++){
seed[j] = rand(); //这5000个种子通过一次取随机数产生
}
for(i = 0; i < 5000; i ++){
srand(seed[i]);//每次取一个种子,那么每次产生的随机数序列就不一样了
vector<record> trainingData;
getRandData(trainingData);//随机生成训练样本
getNoise(trainingData);//加噪声
sortTrainingData(trainingData);//样本排序
hyphothesis bestH = {0,0};
double min_errorRate = E_in(trainingData,bestH);//计算最优hyphothesis并记录最小错误率
cout<<"mininum E_in:"<<min_errorRate<<endl;
totalE_inRate += min_errorRate;
totalE_outRate += E_out(bestH);
cout<<"E_out:"<<E_out(bestH)<<endl;//利用这次得到的最优hyphothesis求E_out
}
cout<<"average E_in:"<<totalE_inRate / 5000<<endl;//得平均E_in
cout<<"E_out:"<<totalE_outRate / 5000<<endl;//得平均E_out
}
以上是关于機器學習基石 机器学习基石 (Machine Learining Foundations) 作业2 Q16-18 C++实现的主要内容,如果未能解决你的问题,请参考以下文章
機器學習基石 机器学习基石 (Machine Learining Foundations) 作业2 Q16-18 C++实现
機器學習基石(Machine Learning Foundations) 机器学习基石 作业四 Q13-20 MATLAB实现
機器學習基石 (Machine Learning Foundations) 作业1 Q18-20的C++实现(pocket)