Lucene 基础数据压缩处理

Posted kenny.wmh

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Lucene 基础数据压缩处理相关的知识,希望对你有一定的参考价值。

Lucene 为了使的信息的存储占用的空间更小,访问速度更快,采取了一些特殊的技巧,然 而在看 Lucene 文件格式的时候,这些技巧却容易使我们感到困惑,所以有必要把这些特殊 的技巧规则提取出来介绍一下。 在下不才,胡乱给这些规则起了一些名字,是为了方便后面应用这些规则的时候能够简单, 不妥之处请大家谅解。

1. 前缀后缀规则(Prefix+Suffix)

Lucene 在反向索引中,要保存词典(Term Dictionary)的信息,所有的词(Term)在词典中是按照 39

字典顺序进行排列的,然而词典中包 了文档中的几乎所有的词,并且有的词还是非常的长 的,这样索引文件会非常的大,所谓前缀后缀规则,即当某个词和前一个词有共同的前缀的 时候,后面的词仅仅保存前缀在词中的偏移(offset),以及除前缀以外的字符串(称为后缀)。

比如要存储如下词:term,termagancy,termagant,terminal, 如果按照正常方式来存储,需要的空间如下:

[VInt = 4] [t][e][r][m],[VInt = 10][t][e][r][m][a][g][a][n][c][y],[VInt = 9][t][e][r][m][a][g][a][n][t], [VInt = 8][t][e][r][m][i][n][a][l]
共需要 35 个 Byte.
如果应用前缀后缀规则,需要的空间如下:
[VInt = 4] [t][e][r][m],[VInt = 4 (offset)][VInt = 6][a][g][a][n][c][y],[VInt = 8 (offset)][VInt = 1][t], [VInt = 4(offset)][VInt = 4][i][n][a][l]
共需要 22 个 Byte。 大大缩小了存储空间,尤其是在按字典顺序排序的情况下,前缀的重合率大大提高。 

2. 差值规则(Delta) 

在 Lucene 的反向索引中,需要保存很多整型数字的信息,比如文档 ID 号,比如词(Term)在 文档中的位置等等。
由上面介绍,我们知道,整型数字是以 VInt 的格式存储的。随着数值的增大,每个数字占 用的 Byte 的个数也逐渐的增多。所谓差值规则(Delta)就是先后保存两个整数的时候,后面 的整数仅仅保存和前面整数的差即可。

 

比如要存储如下整数:16386,16387,16388,16389 如果按照正常方式来存储,需要的空间如下:

[(1) 000, 0010][(1) 000, 0000][(0) 000, 0001],[(1) 000, 0011][(1) 000, 0000][(0) 000, 0001],[(1) 000, 0100][(1) 000, 0000][(0) 000, 0001],[(1) 000, 0101][(1) 000, 0000][(0) 000, 0001]
供需 12 个 Byte。
如果应用差值规则来存储,需要的空间如下:

[(1) 000, 0010][(1) 000, 0000][(0) 000, 0001],[(0) 000, 0001],[(0) 000, 0001],[(0) 000, 0001] 共需 6 个 Byte。
大大缩小了存储空间,而且无论是文档 ID,还是词在文档中的位置,都是按从小到大的顺 序,逐渐增大的。 

3. 或然跟随规则(A,B?) 

 

 

以上是关于Lucene 基础数据压缩处理的主要内容,如果未能解决你的问题,请参考以下文章

Elasticsearch之数据压缩算法

sphinx 源码阅读之分词,压缩索引,倒排——单词对应的文档ID列表本质和lucene无异 也是外部排序再压缩 解压的时候需要全部扫描doc_ids列表偏移量相加获得最终的文档ID

Linux基础知识:SHELL脚本;find查找tar压缩;sed文件处理工具

ElasticSearch实战-FST有限状态转换算法(索引数据压缩算法)

ElasticSearch实战-FST有限状态转换算法(索引数据压缩算法)

hive基础知识四