LibreOJ #108. 多项式乘法
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LibreOJ #108. 多项式乘法相关的知识,希望对你有一定的参考价值。
二次联通门 : LibreOJ #108. 多项式乘法
/* LibreOJ #108. 多项式乘法 FFT板子题 不行啊。。。跑的还是慢 应该找个机会学一学由乃dalao的fft 或者是毛爷爷的fft,跑的真是快啊。。。 */ #include <cstdio> #include <iostream> #include <cmath> const int BUF = 12312312; char Buf[BUF], *buf = Buf; inline void read (int &now) { for (now = 0; !isdigit (*buf); ++ buf); for (; isdigit (*buf); now = now * 10 + *buf - ‘0‘, ++ buf); } using std :: swap; #define Max 3000000 typedef double flo; struct Vec { flo r, i; Vec () {} Vec (flo x, flo y) : r (x), i (y) {} Vec operator * (const Vec &b) const { return Vec (r * b.r - i * b.i, r * b.i + i * b.r); } Vec operator * (const flo &k) const { return Vec (r * k, i * k); } Vec operator + (const Vec &b) const { return Vec (r + b.r, i + b.i); } Vec operator - (const Vec &b) const { return Vec (r - b.r, i - b.i); } Vec& operator /= (const flo &k) { return r /= k, i /= k, *this; } }; Vec a[Max], b[Max]; int N, M, Maxn, rader[Max]; const flo PI = acos (-1); void FFT (Vec *a, int N, int f = 1) { register int i, j, k; for (i = 1; i < N; ++ i) if (rader[i] > i) swap (a[i], a[rader[i]]); for (k = 1; k < N; k <<= 1) { Vec wn (cos (PI / k), f * sin (PI / k)); for (j = 0; j < N; j += k << 1) { Vec w (1, 0), t; for (i = j; i < j + k; ++ i, w = w * wn) { t = w * a[i + k]; a[i + k] = a[i] - t; a[i] = a[i] + t; } } } if (f == -1) for (i = 0; i < N; ++ i) a[i] /= N; } int Main () { fread (buf, 1, BUF, stdin); read (N), read (M); register int i; int x; ++ N, ++ M, Maxn = 1 << int (ceil (log2 (N + M))); for (i = 0; i < N; ++ i) read (x), a[i].r = x; for (i = 0; i < M; ++ i) read (x), b[i].r = x; for (i = 1; i < Maxn; ++ i) rader[i] = rader[i >> 1] >> 1 | (i & 1) * (Maxn >> 1); FFT (a, Maxn), FFT (b, Maxn); for (i = 0; i < Maxn; ++ i) a[i] = a[i] * b[i]; N = N + M - 2; for (FFT (a, Maxn, -1), i = 0; i <= N; ++ i) printf ("%d ", int (round (a[i].r))); return 0; } int ZlycerQan = Main (); int main (int argc, char *argv[]) {;}
以上是关于LibreOJ #108. 多项式乘法的主要内容,如果未能解决你的问题,请参考以下文章
LibreOJ #525. 「LibreOJ β Round #4」多项式