Devu and Flowers lucas定理+容斥原理

Posted joeylee97

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Devu and Flowers lucas定理+容斥原理相关的知识,希望对你有一定的参考价值。

Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109?+?7).

Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

Input

The first line of input contains two space-separated integers n and s (1?≤?n?≤?20, 0?≤?s?≤?1014).

The second line contains n space-separated integers f1,?f2,?... fn (0?≤?fi?≤?1012).

Output

Output a single integer — the number of ways in which Devu can select the flowers modulo (109?+?7).

Example

Input
2 3
1 3
Output
2
Input
2 4
2 2
Output
1
Input
3 5
1 3 2
Output
3

Note

Sample 1. There are two ways of selecting 3 flowers: {1,?2} and {0,?3}.

Sample 2. There is only one way of selecting 4 flowers: {2,?2}.

Sample 3. There are three ways of selecting 5 flowers: {1,?2,?2}, {0,?3,?2}, and {1,?3,?1}.

 

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define mod 1000000007
using namespace std;
inline ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<0||ch>9){if(ch==-)f=-1;ch=getchar();}
    while(ch>=0&&ch<=9){x=x*10+ch-0;ch=getchar();}
    return x*f;
}
ll qpow(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1)ans=(ans*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return ans;
}
ll getc(ll a,ll b)
{
    if(a<b)return 0;
    if(b>a-b)b=a-b;
    ll s1=1,s2=1;
    for(ll i=0;i<b;i++)
    {
        s1=s1*(a-i)%mod;
        s2=s2*(i+1)%mod;
    }
    return s1*qpow(s2,mod-2)%mod;
}
ll lucas(ll n,ll k)
{
    if(k==0)return 1;
    return getc(n%mod,k%mod)*lucas(n/mod,k/mod)%mod;
}
int n;
ll s,f[25];
ll solve()
{
    ll ans=0;
    for(int i=0;i<(1<<n);i++)
    {
        ll sign=1,sum=s;
        for(int j=0;j<n;j++)
        {
            if(i&(1<<j))
            {
                sum-=f[j]+1;
                sign*=-1;
            }
        }
        if(sum<0)continue;
        ans+=sign*lucas(sum+n-1,n-1);
        ans%=mod;
    }
    return (ans+mod)%mod;
}
int main()
{
    cin>>n>>s;
    for(int i=0;i<n;i++)
        cin>>f[i];
    printf("%lld\n",solve());
    return 0;
}

 

以上是关于Devu and Flowers lucas定理+容斥原理的主要内容,如果未能解决你的问题,请参考以下文章

Codeforces 451E Devu and Flowers容斥原理+卢卡斯定理

Codeforces 451E Devu and Flowers(组合计数)

容斥例题Devu and Flowers

容斥例题Devu and Flowers

Codeforces 258E Devu and Flowers

51nod1269Devu and Flowers