51nod 1068 Bash游戏 V3 博弈

Posted Hyouka

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了51nod 1068 Bash游戏 V3 博弈相关的知识,希望对你有一定的参考价值。

题目来源: Ural 1180
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
技术分享 收藏
技术分享 关注
有一堆石子共有N个。A B两个人轮流拿,A先拿。每次拿的数量只能是2的正整数次幂,比如(1,2,4,8,16....),拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。
例如N = 3。A只能拿1颗或2颗,所以B可以拿到最后1颗石子。(输入的N可能为大数)
 
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 1000)
第2 - T + 1行:每行1个数N。(1 <= N <= 10^1000)
Output
共T行,如果A获胜输出A,如果B获胜输出B。
Input示例
3
2
3
4
Output示例
A
B
A


2的幂看上去很厉害的样子,然而这题还是属于bash博弈的变形,所以做法还是打表找规律
然后发现只要是3的倍数就是B赢
不过这题有个问题,就是会有大数,然后我就直接套了个大数模板 其实想起来只要每一位去除3看可不可以就行了 不过也懒得改了
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
#include <iomanip>
#include <math.h>
#include <map>
using namespace std;
#define FIN     freopen("input.txt","r",stdin);
#define FOUT    freopen("output.txt","w",stdout);
#define INF     0x3f3f3f3f
#define INFLL   0x3f3f3f3f3f3f3f
#define lson    l,m,rt<<1
#define rson    m+1,r,rt<<1|1
typedef long long LL;
typedef pair<int, int> PII;
using namespace std;

const int MX = 2500;
const int MAXN = 9999;
const int DLEN = 4;
/*已重载>+-  % 和print*/
class Big {
public:
    int a[MX], len;
    Big(const int b = 0) {
        int c, d = b;
        len = 0;
        memset(a, 0, sizeof(a));
        while(d > MAXN) {
            c = d - (d / (MAXN + 1)) * (MAXN + 1);
            d = d / (MAXN + 1);
            a[len++] = c;
        }
        a[len++] = d;
    }
    Big(const char *s) {
        int t, k, index, L, i;
        memset(a, 0, sizeof(a));
        L = strlen(s);
        len = L / DLEN;
        if(L % DLEN) len++;
        index = 0;
        for(i = L - 1; i >= 0; i -= DLEN) {
            t = 0;
            k = i - DLEN + 1;
            if(k < 0) k = 0;
            for(int j = k; j <= i; j++) {
                t = t * 10 + s[j] - ‘0‘;
            }
            a[index++] = t;
        }
    }
    Big operator/(const int &b)const {
        Big ret;
        int i, down = 0;
        for(int i = len - 1; i >= 0; i--) {
            ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
            down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
        }
        ret.len = len;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
        return ret;
    }
    bool operator>(const Big &T)const {
        int ln;
        if(len > T.len) return true;
        else if(len == T.len) {
            ln = len - 1;
            while(a[ln] == T.a[ln] && ln >= 0) ln--;
            if(ln >= 0 && a[ln] > T.a[ln]) return true;
            else return false;
        } else return false;
    }
    Big operator+(const Big &T)const {
        Big t(*this);
        int i, big;
        big = T.len > len ? T.len : len;
        for(i = 0; i < big; i++) {
            t.a[i] += T.a[i];
            if(t.a[i] > MAXN) {
                t.a[i + 1]++;
                t.a[i] -= MAXN + 1;
            }
        }
        if(t.a[big] != 0) t.len = big + 1;
        else t.len = big;
        return t;
    }
    Big operator-(const Big &T)const {
        int i, j, big;
        bool flag;
        Big t1, t2;
        if(*this > T) {
            t1 = *this;
            t2 = T;
            flag = 0;
        } else {
            t1 = T;
            t2 = *this;
            flag = 1;
        }
        big = t1.len;
        for(i = 0; i < big; i++) {
            if(t1.a[i] < t2.a[i]) {
                j = i + 1;
                while(t1.a[j] == 0) j++;
                t1.a[j--]--;
                while(j > i) t1.a[j--] += MAXN;
                t1.a[i] += MAXN + 1 - t2.a[i];
            } else t1.a[i] -= t2.a[i];
        }
        t1.len = big;
        while(t1.a[t1.len - 1] == 0 && t1.len > 1) {
            t1.len--;
            big--;
        }
        if(flag) t1.a[big - 1] = 0 - t1.a[big - 1];
        return t1;
    }
    int operator%(const int &b)const {
        int i, d = 0;
        for(int i = len - 1; i >= 0; i--) {
            d = ((d * (MAXN + 1)) % b + a[i]) % b;
        }
        return d;
    }
    Big operator*(const Big &T) const {
        Big ret;
        int i, j, up, temp, temp1;
        for(i = 0; i < len; i++) {
            up = 0;
            for(j = 0; j < T.len; j++) {
                temp = a[i] * T.a[j] + ret.a[i + j] + up;
                if(temp > MAXN) {
                    temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
                    up = temp / (MAXN + 1);
                    ret.a[i + j] = temp1;
                } else {
                    up = 0;
                    ret.a[i + j] = temp;
                }
            }
            if(up != 0) {
                ret.a[i + j] = up;
            }
        }
        ret.len = i + j;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--;
        return ret;
    }
    void print() {
        printf("%d", a[len - 1]);
        for(int i = len - 2; i >= 0; i--) printf("%04d", a[i]);
    }
};

int main() {
    //FIN
    int T;
    scanf("%d", &T);
    char s[1005];
    while(T--) {
        scanf("%s", s);
        Big B(s);
        //B.print();
        if(B % 3 != 0) printf("A\n");
        else printf("B\n");
    }
    return 0;
}

  



以上是关于51nod 1068 Bash游戏 V3 博弈的主要内容,如果未能解决你的问题,请参考以下文章

51nod 1066 Bash游戏 Bash博弈

51nod 1066 Bash游戏 V2 博弈

51nod 1066 - Bash游戏,简单博弈

51nod_1831: 小C的游戏(Bash博弈 找规律)

1068 Bash游戏 V3

51nod 1070 Bash游戏 V4