TensorFlow基础9——tensorboard显示网络结构

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow基础9——tensorboard显示网络结构相关的知识,希望对你有一定的参考价值。

 

import tensorflow as tf 
import numpy as np 
import matplotlib.pyplot as plt 

def add_layer(input,in_size,out_size,activation_function=None):
    with tf.name_scope(layer):
        with tf.name_scope(Weights):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name=w)
        with tf.name_scope(biases):
            biases = tf.Variable(tf.zeros([1,out_size])+0.1,name=b)
        with tf.name_scope(Wx_plus_b):
            Wx_plus_b = tf.add(tf.matmul(input,Weights),biases)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)#噪音
y_data = np.square(x_data)-0.5+noise

with tf.name_scope(inputs):
    xs = tf.placeholder(tf.float32,[None,1],name=x_input)
    ys = tf.placeholder(tf.float32,[None,1],name=y_input)

#add hidden layer
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
#add output layer
predition = add_layer(l1,10,1,activation_function=None)

with tf.name_scope(loss):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-predition),reduction_indices=[1]))
with tf.name_scope(train):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init = tf.initialize_all_variables()
sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("D:/logs/",sess.graph) #目录结构尽量简单,复杂了容易出现找不到文件,原因不清楚
sess.run(init)

执行后,在命令行中输入,

一定要先到logs文件夹所在目录下,在输入下面命令,不然会找不到

tensorboard --logdir=D:/logs/   #文件目录和之前里的保持一致

执行结果:

技术分享

打开浏览器:

  输入技术分享显示的网址

技术分享

 

以上是关于TensorFlow基础9——tensorboard显示网络结构的主要内容,如果未能解决你的问题,请参考以下文章

TensorFlow基础9——tensorboard显示网络结构

AI常用框架和工具丨9. 深度学习框架TensorFlow

TensorFlow01 TensorFlow简介与Python基础

TensorFlow简单使用(基础篇)

TensorFlow入门,零基础到精通只需3分钟!

OpenCV+TensorFlow入门人工智能图像处理视频教程 共9章