dnn文本分类

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了dnn文本分类相关的知识,希望对你有一定的参考价值。

简介

文本分类任务根据给定一条文本的内容,判断该文本所属的类别,是自然语言处理领域的一项重要的基础任务。具体的,本任务是对文本quey进行分类,任务流程如下:
  1. 收集用户query数据。
  2. 清洗,标记。
  3. 模型设计。
  4. 模型学习效果评估。

运行

训练: sh +x train.sh
预测: python infer.py

输入/输出

输入样本:

label text(分词后)

0 龙脉温泉 住宿 1 龙马 机场 飞机 2 龙里 旅游 其中,label 0,1和2分别代表:酒店,票务和住宿。

预估样本:

2 0.0002 0.0001 0.9997 港澳 7 日 自助游 label prob text 其中,label为概率最大的类别,即2旅游,中间三个数值为每个类别的概率。

DNN 模型

DNN 模型结构入下图所示:
技术分享

 

技术分享
图1. 本例中的 DNN 文本分类模型
在 PaddlePaddle 实现该 DNN 结构的代码见 network_conf.py 中的 fc_net 函数,模型主要分为如下几个部分:
  • 词向量层:为了更好地表示不同词之间语义上的关系,首先将词语转化为固定维度的向量。训练完成后,词与词语义上的相似程度可以用它们的词向量之间的距离来表示,语义上越相似,距离越近。关于词向量的更多信息请参考PaddleBook中的词向量一节。
  • 最大池化层:最大池化在时间序列上进行,池化过程消除了不同语料样本在单词数量多少上的差异,并提炼出词向量中每一下标位置上的最大值。经过池化后,词向量层输出的向量序列被转化为一条固定维度的向量。例如,假设最大池化前向量的序列为[[2,3,5],[7,3,6],[1,4,0]],则最大池化的结果为:[7,4,6]。
  • 全连接隐层:经过最大池化后的向量被送入两个连续的隐层,隐层之间为全连接结构。
  • 输出层:输出层的神经元数量和样本的类别数一致,例如在二分类问题中,输出层会有2个神经元。通过Softmax激活函数,输出结果是一个归一化的概率分布,和为1,因此第$i$个神经元的输出就可以认为是样本属于第$i$类的预测概率。
  该 DNN 模型默认对输入的语料进行二分类(class_dim=3),embedding(词向量)维度默认为28(emd_dim=28),两个隐层均使用Tanh激活函数(act=paddle.activation.Tanh())。需要注意的是,该模型的输入数据为整数序列,而不是原始的单词序列。事实上,为了处理方便,我们一般会事先将单词根据词频顺序进行 id 化,即将词语转化成在字典中的序号。

源码:

import sys
import math
import gzip

from paddle.v2.layer import parse_network
import paddle.v2 as paddle

__all__ = ["fc_net", "convolution_net"]


def fc_net(dict_dim,
           class_num,
           emb_dim=28,
           hidden_layer_sizes=[28, 8],
           is_infer=False):
    """
    define the topology of the dnn network
    :param dict_dim: size of word dictionary
    :type input_dim: int
    :params class_num: number of instance class
    :type class_num: int
    :params emb_dim: embedding vector dimension
    :type emb_dim: int
    """

    # define the input layers
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(dict_dim))
    if not is_infer:
        lbl = paddle.layer.data("label",
                                paddle.data_type.integer_value(class_num))

    # define the embedding layer
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    # max pooling to reduce the input sequence into a vector (non-sequence)
    seq_pool = paddle.layer.pooling(
        input=emb, pooling_type=paddle.pooling.Max())

    for idx, hidden_size in enumerate(hidden_layer_sizes):
        hidden_init_std = 1.0 / math.sqrt(hidden_size)
        hidden = paddle.layer.fc(
            input=hidden if idx else seq_pool,
            size=hidden_size,
            act=paddle.activation.Tanh(),
            param_attr=paddle.attr.Param(initial_std=hidden_init_std))

    prob = paddle.layer.fc(
        input=hidden,
        size=class_num,
        act=paddle.activation.Softmax(),
        param_attr=paddle.attr.Param(initial_std=1.0 / math.sqrt(class_num)))

    if is_infer:
        return prob
    else:
        return paddle.layer.classification_cost(
            input=prob, label=lbl), prob, lbl


def convolution_net(dict_dim,
                    class_dim=2,
                    emb_dim=28,
                    hid_dim=128,
                    is_infer=False):
    """
    cnn network definition
    :param dict_dim: size of word dictionary
    :type input_dim: int
    :params class_dim: number of instance class
    :type class_dim: int
    :params emb_dim: embedding vector dimension
    :type emb_dim: int
    :params hid_dim: number of same size convolution kernels
    :type hid_dim: int
    """

    # input layers
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(dict_dim))
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))

    # embedding layer
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    # convolution layers with max pooling
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)

    # fc and output layer
    prob = paddle.layer.fc(
        input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())

    if is_infer:
        return prob
    else:
        cost = paddle.layer.classification_cost(input=prob, label=lbl)

return cost, prob, lbl

 

运行结果如下图:

技术分享

 

以上是关于dnn文本分类的主要内容,如果未能解决你的问题,请参考以下文章

文本分类

文本分类

OpenCV3.3深度学习模块(DNN)应用-图像分类

DNN二元分类器的准确率没有增加

神经网络DNN ——正则化

对于图像分类任务,相对于全连接的DNN,CNN模型的主要优点有哪些?