动态规划windy数

Posted wxjor

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划windy数相关的知识,希望对你有一定的参考价值。

BZOJ1026: [SCOI2009]windy数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 7893  Solved: 3559
[Submit][Status][Discuss]

Description

  windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,在A和B之间,包括A和B,总共有多少个windy数?

Input

  包含两个整数,A B。

Output

  一个整数

Sample Input

【输入样例一】
1 10
【输入样例二】
25 50

Sample Output

【输出样例一】
9
【输出样例二】
20

HINT

 

【数据规模和约定】

100%的数据,满足 1 <= A <= B <= 2000000000 。

 

Source

 

试题分析:设dp[i][j]表示i位首位是j的数字有多少个windy数。

     状态转移时我们考虑在前面补位才可以转移。

     dp[i][j]=sum(dp[i-1][k]) (abs(k-j)>1)

     然后我们求1~A-1,1~B的windy数。

     如何求呢?首先肯定要加上所有比x(要求1~x-1的windy数)位数小的。

     然后加上与x同位但是首位比x的首位小的。

     如果首位相同的话,我们就求出剩下有多少windy数就好了。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std;

inline int read(){
	int x=0,f=1;char c=getchar();
	for(;!isdigit(c);c=getchar()) if(c==‘-‘) f=-1;
	for(;isdigit(c);c=getchar()) x=x*10+c-‘0‘;
	return x*f;
}
const int MAXN=100001;
const int INF=999999;
int N,M;
int dp[11][11];
int fit[11];

int Ga(int k){
	int ans=0,x=k,tmp=0;
	while(x){
		fit[++tmp]=x%10;
		x/=10;
	}
	for(int i=1;i<tmp;i++)
		for(int j=1;j<=9;j++)
		    ans+=dp[i][j];
	for(int i=1;i<fit[tmp];i++) ans+=dp[tmp][i];
	for(int i=tmp-1;i>=1;i--){
		for(int j=0;j<fit[i];j++)
			if(abs(j-fit[i+1])>1) ans+=dp[i][j];
		if(abs(fit[i+1]-fit[i])<2) break;
	}
	return ans;
}

int main(){
	N=read(),M=read();
	for(int i=0;i<=9;i++) dp[1][i]=1;
	for(int i=2;i<=10;i++){
		for(int j=0;j<=9;j++)
		    for(int k=0;k<=9;k++)
		        if(abs(k-j)>=2) dp[i][j]+=dp[i-1][k];
	}
	printf("%d\n",Ga(M+1)-Ga(N));
     //因为求的是1~x-1的windy数的个数 }

  

以上是关于动态规划windy数的主要内容,如果未能解决你的问题,请参考以下文章

luogu2657bzoj1026 [SCOI2009]windy数 [动态规划 数位dp]

Acwing 1083. Windy数

BZOJ1026 [SCOI2009]windy数 数位dp

P2657 [SCOI2009]windy数

[SCOI2009]windy数

「SCOI2009」windy数