LIME:模型预測结果是否值得信任?
Posted yxysuanfa
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LIME:模型预測结果是否值得信任?相关的知识,希望对你有一定的参考价值。
但是假设样本一開始由于採样偏差导致样本有偏,导致模型和实际情况有差异。这个就不太好评估了。
相同。p>>N也会有类似的问题。尤其在文本挖掘领域。
普通情况。假设特征不是非常多的话。尤其像logistic regression这种model,我们会把模型权重给打印出来看看,看看训练出的模型结果,是否和人的经验吻合。以下是lime 文章中提到一个文本分类的case。预測一段文本是无神论相关的。还是基督徒相关的。文中分类器预測结果这篇文本是无神论相关的,但是主要区分特征却与人的经验十分不吻合的,这种模型是不能让人信服的,当我们把这几个特征删除后。预測结果又反向了。我们能够通过人工构建一些由这些特征组成的文本来增加到预測实验中,会大大减少模型性能。
作者提出的方法一种局部方法,非全局的,在每一个预測样本附近随机採样产生一些样本,就像下图所,红色“x”是预測样本。周边‘*’和圆形样本都是採样得到的。
如文本a="我女朋友很喜欢看奇葩说",生成的样本能够是“我很喜欢看奇葩说”,“我女朋友看奇葩说”等等。每一个生成样本和原始样本都有个权重,权重的计算方式: w=exp(-d^2/theta^2), d是距离,文本中我们能够採用cosine 距离来表征文本样本间的距离。
有了这些东西,我们以下该干什么呢?记住我们的目的是要解释我们分类器在该预測样本中怎样起作用的? 简单的说是在该预測样本,分类器都是哪些特征起到作用?我们能够事先设定个数值K,我们仅仅看前K个起作用的特征(太多了。人无法查看)
事实上基于文本嵌入表征方式也是可行的,文本中词的替换机制一样。仅仅是在预測採样样本分类概率前须要把採样样本变成向量方式。
预測一个行为是否有风险,当我们的模型预測到该行为是有风险的,我们须要给我们分析师。客服解释这个行为为什么有风险。模型识别风险行为特征是什么。
针对这样的情况,怎样处理? 採样怎么做? 一种简单的方法是把连续特征进行离散化。one-hot编码。这样就和lime对文本分类模型的解释中採样机制是一样的啦。一种就是全然和文本一样,对特征进行置0採样,无论是否是连续变量。
以上是关于LIME:模型预測结果是否值得信任?的主要内容,如果未能解决你的问题,请参考以下文章
R语言基于自定义函数构建xgboost模型并使用LIME解释器进行模型预测结果解释:基于训练数据以及模型构建LIME解释器解释一个iris数据样本的预测结果LIME解释器进行模型预测结果解释并可视化
是否有任何通常被认为值得信赖的 SHA-256 javascript 实现?
R语言构建文本分类模型并使用LIME进行模型解释实战:文本数据预处理构建词袋模型构建xgboost文本分类模型基于文本训练数据以及模型构建LIME解释器解释一个测试语料的预测结果并可视化
R语言构建文本分类模型并使用LIME进行模型解释实战:文本数据预处理构建词袋模型构建xgboost文本分类模型基于文本训练数据以及模型构建LIME解释器解释多个测试语料的预测结果并可视化