R语言构建文本分类模型并使用LIME进行模型解释实战:文本数据预处理构建词袋模型构建xgboost文本分类模型基于文本训练数据以及模型构建LIME解释器解释多个测试语料的预测结果并可视化

Posted Data+Science+Insight

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言构建文本分类模型并使用LIME进行模型解释实战:文本数据预处理构建词袋模型构建xgboost文本分类模型基于文本训练数据以及模型构建LIME解释器解释多个测试语料的预测结果并可视化相关的知识,希望对你有一定的参考价值。

R语言构建文本分类模型并使用LIME进行模型解释实战:文本数据预处理、构建词袋模型、构建xgboost文本分类模型、基于文本训练数据以及模型构建LIME解释器解释多个测试语料的预测结果并可视化

目录

以上是关于R语言构建文本分类模型并使用LIME进行模型解释实战:文本数据预处理构建词袋模型构建xgboost文本分类模型基于文本训练数据以及模型构建LIME解释器解释多个测试语料的预测结果并可视化的主要内容,如果未能解决你的问题,请参考以下文章

R语言基于自定义函数构建xgboost模型并使用LIME解释器进行模型预测结果解释:基于训练数据以及模型构建LIME解释器解释多个iris数据样本的预测结果使用LIME解释器进行模型预测结果解释

R语言基于自定义函数构建xgboost模型并使用LIME解释器进行模型预测结果解释:基于训练数据以及模型构建LIME解释器解释一个iris数据样本的预测结果LIME解释器进行模型预测结果解释并可视化

独家 | 在R中使用LIME解释机器学习模型

R语言构建文本分类模型:文本数据预处理构建词袋模型(bag of words)构建xgboost文本分类模型xgboost模型预测推理并使用混淆矩阵评估模型可视化模型预测的概率分布

`object` 和 `newdata` 中存储的特征名称不同!使用 LIME 包解释 R 中的 xgboost 模型时

将 LIME 解释应用于我的微调 BERT 以进行序列分类模型?