EularProject 39:给周长推断构成直角三角形个数
Posted jhcelue
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了EularProject 39:给周长推断构成直角三角形个数相关的知识,希望对你有一定的参考价值。
华电北风吹
天津大学认知计算与应用重点实验室
完毕日期:2015/7/30
Integer right triangles
Problem 39
If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120.
{20,48,52}, {24,45,51}, {30,40,50}
For which value of p ≤ 1000, is the number of solutions maximised?
Answer:
840
Completed on Thu, 30 Jul 2015, 04:51
Go to the thread for problem 39 in the forum.
利用的性质
当中第二个性质整除
__author__ = ‘zhengyi‘
def IsRightTriangle(abc):
a2=pow(abc[0],2)
b2=pow(abc[1],2)
c2=pow(abc[2],2)
temp=a2+b2-c2
if temp==0:
return 1
else:
if temp<0:
return 0
else:
return -1
def Count(perimeter):
count=0
for a in range(1,perimeter//3):
if pow(a,2)%(perimeter-a)!=0 or pow(a,2)//(perimeter-a)>=a:
continue
for b in range(max(perimeter//2-a,a),perimeter//2):
temp=IsRightTriangle([a,b,perimeter-a-b])
if temp==-1:
break
else:
count+=temp
return count
count=0
p=0
for i in range(1,1001):
temp=Count(i)
if temp>count:
p=i
count=temp
print(p)
以上是关于EularProject 39:给周长推断构成直角三角形个数的主要内容,如果未能解决你的问题,请参考以下文章