tensorflow如何查看版本,tflearn如何混合模型

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow如何查看版本,tflearn如何混合模型相关的知识,希望对你有一定的参考价值。

查看版本

import tensorflow as tf

print tf.__version__

混合模型

‘‘‘
  Demonstrate that weights saved with models in one scope, can be loaded
  into models being used in a different scope.
   
  This allows multiple models to be run, and combined models to load
  weights from separately trained models.
  ‘‘‘
   
  from __future__ import division, print_function, absolute_import
   
  import re
  import tflearn
  import tensorflow as tf
  import tflearn.datasets.mnist as mnist
   
  from tflearn.layers.core import input_data, dropout, fully_connected
  from tflearn.layers.conv import conv_2d, max_pool_2d
  from tflearn.layers.normalization import local_response_normalization
  from tflearn.layers.estimator import regression
   
  #-----------------------------------------------------------------------------
   
  class Model1(object):
  ‘‘‘
  convnet MNIST
  ‘‘‘
  def __init__(self):
  network = tflearn.input_data(shape=[None, 784], name="input")
  network = self.make_core_network(network)
  network = regression(network, optimizer=‘adam‘, learning_rate=0.01,
  loss=‘categorical_crossentropy‘, name=‘target‘)
   
  model = tflearn.DNN(network, tensorboard_verbose=0)
  self.model = model
   
  @staticmethod
  def make_core_network(network):
  network = tflearn.reshape(network, [-1, 28, 28, 1], name="reshape")
  network = conv_2d(network, 32, 3, activation=‘relu‘, regularizer="L2")
  network = max_pool_2d(network, 2)
  network = local_response_normalization(network)
  network = conv_2d(network, 64, 3, activation=‘relu‘, regularizer="L2")
  network = max_pool_2d(network, 2)
  network = local_response_normalization(network)
  network = fully_connected(network, 128, activation=‘tanh‘)
  network = dropout(network, 0.8)
  network = fully_connected(network, 256, activation=‘tanh‘)
  network = dropout(network, 0.8)
  network = fully_connected(network, 10, activation=‘softmax‘)
  return network
   
  def train(self, X, Y, testX, testY, n_epoch=1, snapshot_step=1000):
  # Training
  self.model.fit({‘input‘: X}, {‘target‘: Y}, n_epoch=n_epoch,
  validation_set=({‘input‘: testX}, {‘target‘: testY}),
  snapshot_step=snapshot_step,
  show_metric=True, run_id=‘convnet_mnist‘)
   
  class Model2(object):
  ‘‘‘
  dnn MNIST
  ‘‘‘
  def __init__(self):
  # Building deep neural network
  network = tflearn.input_data(shape=[None, 784], name="input")
  network = self.make_core_network(network)
   
  # Regression using SGD with learning rate decay and Top-3 accuracy
  sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
  top_k = tflearn.metrics.Top_k(3)
   
  network = tflearn.regression(network, optimizer=sgd, metric=top_k,
  loss=‘categorical_crossentropy‘, name="target")
  model = tflearn.DNN(network, tensorboard_verbose=0)
  self.model = model
   
  @staticmethod
  def make_core_network(network):
  dense1 = tflearn.fully_connected(network, 64, activation=‘tanh‘,
  regularizer=‘L2‘, weight_decay=0.001, name="dense1")
  dropout1 = tflearn.dropout(dense1, 0.8)
  dense2 = tflearn.fully_connected(dropout1, 64, activation=‘tanh‘,
  regularizer=‘L2‘, weight_decay=0.001, name="dense2")
  dropout2 = tflearn.dropout(dense2, 0.8)
  softmax = tflearn.fully_connected(dropout2, 10, activation=‘softmax‘, name="softmax")
  return softmax
   
  def train(self, X, Y, testX, testY, n_epoch=1, snapshot_step=1000):
  # Training
  self.model.fit(X, Y, n_epoch=n_epoch, validation_set=(testX, testY),
  snapshot_step=snapshot_step,
  show_metric=True, run_id="dense_model")
   
  class Model12(object):
  ‘‘‘
  Combination of two networks
  ‘‘‘
  def __init__(self):
  inputs = tflearn.input_data(shape=[None, 784], name="input")
   
  with tf.variable_scope("scope1") as scope:
  net_conv = Model1.make_core_network(inputs) # shape (?, 10)
  with tf.variable_scope("scope2") as scope:
  net_dnn = Model2.make_core_network(inputs) # shape (?, 10)
   
  network = tf.concat([net_conv, net_dnn], 1, name="concat") # shape (?, 20)
  network = tflearn.fully_connected(network, 10, activation="softmax")
  network = regression(network, optimizer=‘adam‘, learning_rate=0.01,
  loss=‘categorical_crossentropy‘, name=‘target‘)
   
  self.model = tflearn.DNN(network, tensorboard_verbose=0)
   
  def load_from_two(self, m1fn, m2fn):
  self.model.load(m1fn, scope_for_restore="scope1", weights_only=True)
  self.model.load(m2fn, scope_for_restore="scope2", weights_only=True, create_new_session=False)
   
  def train(self, X, Y, testX, testY, n_epoch=1, snapshot_step=1000):
  # Training
  self.model.fit(X, Y, n_epoch=n_epoch, validation_set=(testX, testY),
  snapshot_step=snapshot_step,
  show_metric=True, run_id="model12")
   
  #-----------------------------------------------------------------------------
   
  X, Y, testX, testY = mnist.load_data(one_hot=True)
   
  def prepare_model1_weights_file():
  tf.reset_default_graph()
  m1 = Model1()
  m1.train(X, Y, testX, testY, 2)
  m1.model.save("model1.tfl")
   
  def prepare_model1_weights_file_in_scopeQ():
  tf.reset_default_graph()
  with tf.variable_scope("scopeQ") as scope:
  m1 = Model1()
  m1.model.fit({"scopeQ/input": X}, {"scopeQ/target": Y}, n_epoch=1, validation_set=0.1, show_metric=True, run_id="model1_scopeQ")
  m1.model.save("model1_scopeQ.tfl")
   
  def prepare_model2_weights_file():
  tf.reset_default_graph()
  m2 = Model2()
  m2.train(X, Y, testX, testY, 1)
  m2.model.save("model2.tfl")
   
  def demonstrate_loading_weights_into_different_scope():
  print("="*60 + " Demonstrate loading weights saved in scopeQ, into variables now in scopeA")
  tf.reset_default_graph()
  with tf.variable_scope("scopeA") as scope:
  m1a = Model1()
  print ("=" * 60 + " Trying to load model1 weights from scopeQ into scopeA")
  m1a.model.load("model1_scopeQ.tfl", variable_name_map=("scopeA", "scopeQ"), verbose=True)
   
  def demonstrate_loading_weights_into_different_scope_using_custom_function():
  print("="*60 + " Demonstrate loading weights saved in scopeQ, into variables now in scopeA, using custom map function")
  tf.reset_default_graph()
  def vname_map(ename): # variables were saved in scopeA, but we want to load into scopeQ
  name_in_file = ename.replace("scopeA", "scopeQ")
  print ("%s -> %s" % (ename, name_in_file))
  return name_in_file
  with tf.variable_scope("scopeA") as scope:
  m1a = Model1()
  print ("=" * 60 + " Trying to load model1 weights from scopeQ into scopeA")
  m1a.model.load("model1_scopeQ.tfl", variable_name_map=vname_map, verbose=True)
   
  def demonstrate_loading_two_instances_of_model1():
  print("="*60 + " Demonstrate loading weights from model1 into two instances of model1 in scopeA and scopeB")
  tf.reset_default_graph()
  with tf.variable_scope("scopeA") as scope:
  m1a = Model1()
  print ("-" * 40 + " Trying to load model1 weights: should fail")
  try:
  m1a.model.load("model1.tfl", weights_only=True)
  except Exception as err:
  print ("Loading failed, with error as expected, because variables are in scopeA")
  print ("error: %s" % str(err))
  print ("-" * 40)
   
  print ("=" * 60 + " Trying to load model1 weights: should succeed")
  m1a.model.load("model1.tfl", scope_for_restore="scopeA", verbose=True, weights_only=True)
   
  with tf.variable_scope("scopeB") as scope:
  m1b = Model1()
  m1b.model.load("model1.tfl", scope_for_restore="scopeB", verbose=True, weights_only=True)
  print ("="*60 + " Successfully restored weights to two instances of model1, in different scopes")
   
  def demonstrate_combined_model1_and_model2_network():
  print("="*60 + " Demonstrate loading weights from model1 and model2 into new mashup network model12")
  print ("-"*40 + " Creating mashup of model1 and model2 networks")
  tf.reset_default_graph()
  m12 = Model12()
  print ("-"*60 + " Loading model1 and model2 weights into mashup")
  m12.load_from_two("model1.tfl", "model2.tfl")
  print ("-"*60 + " Training mashup")
  m12.train(X, Y, testX, testY, 1)
  print ("-"*60 + " Saving mashup weights")
  m12.model.save("model12.tfl")
  print ("-"*60 + " Done")
   
  print("="*77)
  prepare_model1_weights_file()
  prepare_model2_weights_file()
  prepare_model1_weights_file_in_scopeQ()
  print("-"*77)
  print("-"*77)
   
  demonstrate_loading_weights_into_different_scope()
  demonstrate_loading_weights_into_different_scope_using_custom_function()
  demonstrate_loading_two_instances_of_model1()
  demonstrate_combined_model1_and_model2_network()
   
  print("="*77)

 

以上是关于tensorflow如何查看版本,tflearn如何混合模型的主要内容,如果未能解决你的问题,请参考以下文章

ubuntu tensorflow 安装包

从tensorflow到tflearn/keras:框架比较

tflearn/张量流 |多流/多尺度/集成模型定义

85使用TFLearn实现iris数据集的分类

Tensorflows安装(cpu版安装方法)

利用 TFLearn 快速搭建经典深度学习模型