费马小定理证明

Posted 勿忘初心0924

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了费马小定理证明相关的知识,希望对你有一定的参考价值。

    费马小定理证明

      费马小定理定义:假如p是质数,且gcd(a,p)=1,那么a^(p-1)≡1(mod p),就是说,如果p是质数,并且a与p互质,那么a的p-1次方膜上p恒等于1。下面给出证明:

        例如:13是一个质数,那么1,2,3,4,5,6,7,8,9,10,11,12乘上一个与13互质的数,比如乘上3,得到3,6,9,12,15,18,21,24,27,30,33,36,

         然后膜上13得到3,6,9,12,2,5,8,11,1,4,7,10,给这些数排序就会发现,他们就是1,2,3,4,5,6,7,8,9,10,11,12,也就是12的阶乘12!

                        再将{3,6,9,12,15,18,21,24,27,30,33,36}提取公因式3得到3^(12)*12!%13, ≡12!,两边同时除以12!,就得到3^(12)%13≡1

                        最后将3和13换成a,p就得到费马小定理,a^(p-1)%p≡1,也就是a^(p-1)≡1(mod p)

以上是关于费马小定理证明的主要内容,如果未能解决你的问题,请参考以下文章

欧拉定理 / 费马小定理证明

费马小定理(介绍+证明+逆元代码实现)

费马小定理(介绍+证明+逆元代码实现)

费马小定理&欧拉定理

费马小定理(附带欧拉定理)

夜深人静写算法(三十二)- 费马小定理