word2vec参数

Posted simple_wxl

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了word2vec参数相关的知识,希望对你有一定的参考价值。

    架构:skip-gram(慢、对罕见字有利)vs CBOW(快)

·         训练算法:分层softmax(对罕见字有利)vs 负采样(对常见词和低纬向量有利)

·         欠采样频繁词:可以提高结果的准确性和速度(适用范围1e-3到1e-5)

·         文本(window)大小:skip-gram通常在10附近,CBOW通常在5附近

 

 

用gensim函数库训练Word2Vec模型有很多配置参数。这里对gensim文档的Word2Vec函数的参数说明进行翻译,以便不时之需。

 

class gensim.models.word2vec.Word2Vec(sentences=None,size=100,alpha=0.025,window=5min_count=5max_vocab_size=Nonesample=0.001,seed=1workers=3,min_alpha=0.0001sg=0hs=0negative=5,cbow_mean=1hashfxn=<built-in function hash>,iter=5,null_word=0trim_rule=Nonesorted_vocab=1batch_words=10000)

参数:

 

·  sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建。
·  sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
·  size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
·  window:表示当前词与预测词在一个句子中的最大距离是多少
·  alpha: 是学习速率
·  seed:用于随机数发生器。与初始化词向量有关。
·  min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5
·  max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
·  sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)
·  workers参数控制训练的并行数。
·  hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(defau·t),则negative sampling会被使用。
·  negative: 如果>0,则会采用negativesamp·ing,用于设置多少个noise words
·  cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(defau·t)则采用均值。只有使用CBOW的时候才起作用。
·  hashfxn: hash函数来初始化权重。默认使用python的hash函数
·  iter: 迭代次数,默认为5
·  trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的函数。
·  sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。
·  batch_words:每一批的传递给线程的单词的数量,默认为10000

 

 

以上是关于word2vec参数的主要内容,如果未能解决你的问题,请参考以下文章

gensim.models.word2vec() 参数详解

gensim.models.word2vec() 参数详解

word2vec参数

机器学习之路: python 实践 word2vec 词向量技术

[Pytorch系列-57]:循环神经网络 - gensim.models.word2vec参数详解与构建词向量模型

预训练中Word2vec,ELMO,GPT与BERT对比