二叉树的遍历
Posted 翎野
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉树的遍历相关的知识,希望对你有一定的参考价值。
原文出自:http://blog.csdn.net/fantasy_lin_/article/details/52751559#
1、分析
二叉树的深度优先遍历的非递归的通用做法是采用栈,广度优先遍历的非递归的通用做法是采用队列。
深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:
- 先序遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
- 中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
- 后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
深度优先
英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。对于上面的例子来说深度优先遍历的结果就是:A,B,D,E,I,C,F,G,H.(假设先走子节点的的左侧)。
深度优先遍历各个节点,需要使用到堆(Stack)这种数据结构。stack的特点是是先进后出。整个遍历过程如下:
首先将A节点压入堆中,stack(A);
将A节点弹出,同时将A的子节点C,B压入堆中,此时B在堆的顶部,stack(B,C);
将B节点弹出,同时将B的子节点E,D压入堆中,此时D在堆的顶部,stack(D,E,C);
将D节点弹出,没有子节点压入,此时E在堆的顶部,stack(E,C);
将E节点弹出,同时将E的子节点I压入,stack(I,C);
...依次往下,最终遍历完成。
广度优先
英文缩写为BFS即Breadth FirstSearch。其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。对于上面的例子来说,广度优先遍历的 结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问)。
广度优先遍历各个节点,需要使用到队列(Queue)这种数据结构,queue的特点是先进先出,其实也可以使用双端队列,区别就是双端队列首位都可以插入和弹出节点。整个遍历过程如下:
首先将A节点插入队列中,queue(A);
将A节点弹出,同时将A的子节点B,C插入队列中,此时B在队列首,C在队列尾部,queue(B,C);
将B节点弹出,同时将B的子节点D,E插入队列中,此时C在队列首,E在队列尾部,queue(C,D,E);
将C节点弹出,同时将C的子节点F,G,H插入队列中,此时D在队列首,H在队列尾部,queue(D,E,F,G,H);
将D节点弹出,D没有子节点,此时E在队列首,H在队列尾部,queue(E,F,G,H);
...依次往下,最终遍历完成。
package BinaryTreeTraverseTest; import java.util.LinkedList; import java.util.Queue; /** * 二叉树的深度优先遍历和广度优先遍历 * @author Fantasy * @version 1.0 2016/10/05 - 2016/10/07 */ public class BinaryTreeTraverseTest { public static void main(String[] args) { BinarySortTree<Integer> tree = new BinarySortTree<Integer>(); tree.insertNode(35); tree.insertNode(20); tree.insertNode(15); tree.insertNode(16); tree.insertNode(29); tree.insertNode(28); tree.insertNode(30); tree.insertNode(40); tree.insertNode(50); tree.insertNode(45); tree.insertNode(55); System.out.print("先序遍历(递归):"); tree.preOrderTraverse(tree.getRoot()); System.out.println(); System.out.print("中序遍历(递归):"); tree.inOrderTraverse(tree.getRoot()); System.out.println(); System.out.print("后序遍历(递归):"); tree.postOrderTraverse(tree.getRoot()); System.out.println(); System.out.print("先序遍历(非递归):"); tree.preOrderTraverseNoRecursion(tree.getRoot()); System.out.println(); System.out.print("中序遍历(非递归):"); tree.inOrderTraverseNoRecursion(tree.getRoot()); System.out.println(); System.out.print("后序遍历(非递归):"); tree.postOrderTraverseNoRecursion(tree.getRoot()); System.out.println(); System.out.print("广度优先遍历:"); tree.breadthFirstTraverse(tree.getRoot()); } } /** * 结点 */ class Node<E extends Comparable<E>> { E value; Node<E> left; Node<E> right; Node(E value) { this.value = value; left = null; right = null; } } /** * 使用一个先序序列构建一棵二叉排序树(又称二叉查找树) */ class BinarySortTree<E extends Comparable<E>> { private Node<E> root; BinarySortTree() { root = null; } public void insertNode(E value) { if (root == null) { root = new Node<E>(value); return; } Node<E> currentNode = root; while (true) { if (value.compareTo(currentNode.value) > 0) { if (currentNode.right == null) { currentNode.right = new Node<E>(value); break; } currentNode = currentNode.right; } else { if (currentNode.left == null) { currentNode.left = new Node<E>(value); break; } currentNode = currentNode.left; } } } public Node<E> getRoot(){ return root; } /** * 先序遍历二叉树(递归) * @param node */ public void preOrderTraverse(Node<E> node) { System.out.print(node.value + " "); if (node.left != null) preOrderTraverse(node.left); if (node.right != null) preOrderTraverse(node.right); } /** * 中序遍历二叉树(递归) * @param node */ public void inOrderTraverse(Node<E> node) { if (node.left != null) inOrderTraverse(node.left); System.out.print(node.value + " "); if (node.right != null) inOrderTraverse(node.right); } /** * 后序遍历二叉树(递归) * @param node */ public void postOrderTraverse(Node<E> node) { if (node.left != null) postOrderTraverse(node.left); if (node.right != null) postOrderTraverse(node.right); System.out.print(node.value + " "); } /** * 先序遍历二叉树(非递归) * @param root */ public void preOrderTraverseNoRecursion(Node<E> root) { LinkedList<Node<E>> stack = new LinkedList<Node<E>>(); Node<E> currentNode = null; stack.push(root); while (!stack.isEmpty()) { currentNode = stack.pop(); System.out.print(currentNode.value + " "); if (currentNode.right != null) stack.push(currentNode.right); if (currentNode.left != null) stack.push(currentNode.left); } } /** * 中序遍历二叉树(非递归) * @param root */ public void inOrderTraverseNoRecursion(Node<E> root) { LinkedList<Node<E>> stack = new LinkedList<Node<E>>(); Node<E> currentNode = root; while (currentNode != null || !stack.isEmpty()) { // 一直循环到二叉排序树最左端的叶子结点(currentNode是null) while (currentNode != null) { stack.push(currentNode); currentNode = currentNode.left; } currentNode = stack.pop(); System.out.print(currentNode.value + " "); currentNode = currentNode.right; } } /** * 后序遍历二叉树(非递归) * @param root */ public void postOrderTraverseNoRecursion(Node<E> root) { LinkedList<Node<E>> stack = new LinkedList<Node<E>>(); Node<E> currentNode = root; Node<E> rightNode = null; while (currentNode != null || !stack.isEmpty()) { // 一直循环到二叉排序树最左端的叶子结点(currentNode是null) while (currentNode != null) { stack.push(currentNode); currentNode = currentNode.left; } currentNode = stack.pop(); // 当前结点没有右结点或上一个结点(已经输出的结点)是当前结点的右结点,则输出当前结点 while (currentNode.right == null || currentNode.right == rightNode) { System.out.print(currentNode.value + " "); rightNode = currentNode; if (stack.isEmpty()) { return; //root以输出,则遍历结束 } currentNode = stack.pop(); } stack.push(currentNode); //还有右结点没有遍历 currentNode = currentNode.right; } } /** * 广度优先遍历二叉树,又称层次遍历二叉树 * @param node */ public void breadthFirstTraverse(Node<E> root) { Queue<Node<E>> queue = new LinkedList<Node<E>>(); Node<E> currentNode = null; queue.offer(root); while (!queue.isEmpty()) { currentNode = queue.poll(); System.out.print(currentNode.value + " "); if (currentNode.left != null) queue.offer(currentNode.left); if (currentNode.right != null) queue.offer(currentNode.right); } } }
以上是关于二叉树的遍历的主要内容,如果未能解决你的问题,请参考以下文章