读论文《BP改进算法在哮喘症状-证型分类预测中的应用》

Posted 比较大的小仙女

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了读论文《BP改进算法在哮喘症状-证型分类预测中的应用》相关的知识,希望对你有一定的参考价值。

总结:

一、研究内容

  本文研究了CAL-BP(基于隐层的竞争学习与学习率的自适应的改进BP算法)在症状证型分类预测中的应用。

 

二、算法思想

  1、隐层计算完各节点的误差后,对有最大误差的节点的权值进行正常修正,

     而对其它单元的权值都向相反方向修正,用 δ表示隐层节点的权值修正量,

       则修正量的调整公式具体为

    

 

  2、每次算法迭代完以后,计算误差函数的值并与前一次的值进行比较,如果误差函数的值增大,

       则代表过调了学习率,应在下一次迭代时以一定比率下调学习率 ],若误差函数的i+1值减小,

       则代表学习率增幅可以加大,用z 代表第次迭代时的学习率,E+ 代表 +1次迭代后

       的误差函数具体改变值,则第 +2次迭代时的学习率为:

           

三、结论

  本文中应用改进算法,误差经过反复修改可固定在0.0403,识别率达83.6%,训练时间也从普通1分40缩短到11秒。

  CAL-BP比普通的BP收敛快,训练时间少,识别率高等。

 

四、我的理解

  算法方面:对数据的预处理(输入数据的处理和量化处理及输出数据的量化处理)整体上有了一个把握,算法里以前感觉比较抽象的地方,具体化了。

  思想方面:利用手头的数据来做一个仿真的具体实践推进了一步。 

 

五、不理解的部分

  描述量化的地方,量化值的取值有一个地方没有搞明白(下图荧光色的地方:为什么三种证型,量化值取{0 1 2 3}),需要再琢磨或请教。

  

   算法思想也有不懂的地方,就是公式的表达来源。

 

其他就是需要自己实践实践了。继续加油嘛~~

  

 

 

 

以上是关于读论文《BP改进算法在哮喘症状-证型分类预测中的应用》的主要内容,如果未能解决你的问题,请参考以下文章

BP预测基于Tent混沌映射改进麻雀算法改进BP神经网络实现数据预测

BP预测基于Logistic混沌映射改进麻雀算法改进BP神经网络实现数据预测

BP预测基于Tent混沌映射改进麻雀算法改进BP神经网络实现数据预测

BP预测基于遗传算法改进BP神经网络实现数据预测

BP预测基于蝗虫算法改进BP神经网络实现数据预测

BP预测基于遗传算法改进BP神经网络实现数据预测