中山市选2010BZOJ2467生成树
Posted cynchanpin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了中山市选2010BZOJ2467生成树相关的知识,希望对你有一定的参考价值。
Description
有一种图形叫做五角形圈。一个五角形圈的中心有1个由n个顶点和n条边组成的圈。
在中心的这个n边圈的每一条边同一时候也是某一个五角形的一条边,一共同拥有n个不同的五角形。这些五角形仅仅在五角形圈的中心的圈上有公共的顶点。如图0所看到的是一个4-五角形圈。
如今给定一个n五角形圈。你的任务就是求出n五角形圈的不同生成树的数目。还记得什么是图的生成树吗?一个图的生成树是保留原图的全部顶点以及顶点的数目减去一这么多条边,从而生成的一棵树。
注意:在给定的n五角形圈中全部顶点均视为不同的顶点。
Input
输入包括多组測试数据。
第一行包括一个正整数T,表示測试数据数目。每组測试数据包括一个整数n( 2<=N<=100),代表你须要求解的五角形圈中心的边数。
Output
对每一组測试数据,输出一行包括一个整数x。表示n五角形圈的生成树数目模2007之后的结果。
Sample Input
1
2
Sample Output
40
HINT
Source
直接Matrix-tree定理就好了
也能够用组合数学/DP来做
关于组合数学能够看PoPoQQQ的blog
果然还是矩阵树好想…
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 1010
#define P 2007
using namespace std;
int A[MAXN][MAXN],D[MAXN][MAXN],C[MAXN][MAXN];
int n,top;
int T;
int calc(int size)
{
for (int i=1;i<size;i++)
for (int j=1;j<size;j++)
C[i][j]=(C[i][j]+P)%P;
int ret=1;
for (int i=1;i<size;i++)
{
for (int j=i+1;j<size;j++)
{
int a=C[i][i],b=C[j][i];
while (b)
{
int temp=a/b;a%=b;swap(a,b);
for (int k=i;k<size;k++) C[i][k]=(C[i][k]-temp*C[j][k])%P;
for (int k=i;k<size;k++) swap(C[i][k],C[j][k]);
ret=-ret;
}
}
if (!C[i][i]) return 0;
ret=ret*C[i][i]%P;
}
return (ret+P)%P;
}
int main()
{
scanf("%d",&T);
while (T--)
{
memset(A,0,sizeof(A));memset(D,0,sizeof(D));
scanf("%d",&n);
top=n;
for (int i=1;i<=n;i++)
{
int u=i,v=i+1>n?1:i+1;
A[u][top+1]++;A[top+1][u]++;D[u][u]++;D[top+1][top+1]++;
A[top+1][top+2]++;A[top+2][top+1]++;D[top+1][top+1]++;D[top+2][top+2]++;
A[top+2][top+3]++;A[top+3][top+2]++;D[top+2][top+2]++;D[top+3][top+3]++;
A[top+3][v]++;A[v][top+3]++;D[top+3][top+3]++;D[v][v]++;
top+=3;
A[u][v]++;A[v][u]++;D[u][u]++;D[v][v]++;
}
for (int i=1;i<=top;i++)
for (int j=1;j<=top;j++)
C[i][j]=D[i][j]-A[i][j];
cout<<calc(top)<<endl;
}
}
以上是关于中山市选2010BZOJ2467生成树的主要内容,如果未能解决你的问题,请参考以下文章