关于图像高速缩放算法,目前看到的最好的最清晰的一篇文章2
Posted mydddfly
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于图像高速缩放算法,目前看到的最好的最清晰的一篇文章2相关的知识,希望对你有一定的参考价值。
http://www.myexception.cn/image/1630385.html
关于图像快速缩放算法,目前看到的最好的最清晰的一篇文章
昨天开始写一个录制屏幕和声音存储为视频文件的程序,差不多完成了。
屏幕录制使用方法:抓屏(方法很多,BitBlt、DirectX、MirrorDriver等),缩放,X264压缩(开源的,自己封装)
声音录制使用方法:声卡采集PCM数据,AAC压缩(开源的,自己封装)
最后打包复用为MP4文件,可以使用ffmpeg或者mp4v2等。
经过断断续续一天的时间,程序基本写好了,效果还不错,现在就差屏幕缩放了,默认的是使用屏幕分辨率做完最终保存的视频的分辨率。
十几年前写过一个简单的快速缩放算法,速度快但是效果一般,网上查了查,发现一篇很好的文章,
非常细致地写了图像缩放的几种算法及其深入优化,使用了MMX/SSE指令,非常不错,明天试试。
=========================================================================================
高质量的快速的图像缩放 全文 分为:
上篇 近邻取样插值和其速度优化
中篇 二次线性插值和三次卷积插值
下篇 三次线性插值和MipMap链
正文:
为了便于讨论,这里只处理32bit的ARGB颜色;
代码使用C++;涉及到汇编优化的时候假定为x86平台;使用的编译器为vc2005;
为了代码的可读性,没有加入异常处理代码;
测试使用的CPU为AMD64x2 4200+(2.37G) 和 Intel Core2 4400(2.00G);
速度测试说明:
只测试内存数据到内存数据的缩放
测试图片都是800*600缩放到1024*768; fps表示每秒钟的帧数,值越大表示函数越快
////////////////////////////////////////////////////////////////////////////////
//Windows GDI相关函数参考速度:
//==============================================================================
// BitBlt 544.7 fps //is copy 800*600 to 800*600
// BitBlt 331.6 fps //is copy 1024*1024 to 1024*1024
// StretchBlt 232.7 fps //is zoom 800*600 to 1024*1024
////////////////////////////////////////////////////////////////////////////////
A: 首先定义图像数据结构:
#define asm __asm
typedef unsigned char TUInt8; // [0..255]
struct TARGB32 //32 bit color
{
TUInt8 B,G,R,A; // A is alpha
};
struct TPicRegion //一块颜色数据区的描述,便于参数传递
{
TARGB32* pdata; //颜色数据首地址
long byte_width; //一行数据的物理宽度(字节宽度);
//abs(byte_width)有可能大于等于width*sizeof(TARGB32);
long width; //像素宽度
long height; //像素高度
};
//那么访问一个点的函数可以写为:
inline TARGB32& Pixels(const TPicRegion& pic,const long x,const long y)
{
return ( (TARGB32*)((TUInt8*)pic.pdata+pic.byte_width*y) )[x];
}
B: 缩放原理和公式图示:
缩放后图片 原图片
(宽DW,高DH) (宽SW,高SH)
(Sx-0)/(SW-0)=(Dx-0)/(DW-0) (Sy-0)/(SH-0)=(Dy-0)/(DH-0)
=> Sx=Dx*SW/DW Sy=Dy*SH/DH
C: 缩放算法的一个参考实现
//给出一个最简单的缩放函数(插值方式为近邻取样,而且我“尽力”把它写得慢一些了:D)
//Src.PColorData指向源数据区,Dst.PColorData指向目的数据区
//函数将大小为Src.Width*Src.Height的图片缩放到Dst.Width*Dst.Height的区域中
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
for (long x=0;x<Dst.width;++x)
{
for (long y=0;y<Dst.height;++y)
{
long srcx=(x*Src.width/Dst.width);
long srcy=(y*Src.height/Dst.height);
Pixels(Dst,x,y)=Pixels(Src,srcx,srcy);
}
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom0 19.4 fps
////////////////////////////////////////////////////////////////////////////////
D: 优化PicZoom0函数
a.PicZoom0函数并没有按照颜色数据在内存中的排列顺序读写(内部循环递增y行
索引),将造成CPU缓存预读失败和内存颠簸导致巨大的性能损失,(很多硬件都有这种特性,
包括缓存、内存、显存、硬盘等,优化顺序访问,随机访问时会造成巨大的性能损失)
所以先交换x,y循环的顺序:
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
for (long y=0;y<Dst.height;++y)
{
for (long x=0;x<Dst.width;++x)
{
long srcx=(x*Src.width/Dst.width);
long srcy=(y*Src.height/Dst.height);
Pixels(Dst,x,y)=Pixels(Src,srcx,srcy);
}
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom1 30.1 fps
////////////////////////////////////////////////////////////////////////////////
b.“(x*Src.Width/Dst.Width)”表达式中有一个除法运算,它属于很慢的操作(比一般
的加减运算慢几十倍!),使用定点数的方法来优化它;
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
//函数能够处理的最大图片尺寸65536*65536
unsigned long xrIntFloat_16=(Src.width<<16)/Dst.width+1; //16.16格式定点数
unsigned long yrIntFloat_16=(Src.height<<16)/Dst.height+1; //16.16格式定点数
{
for (unsigned long x=0;x<Dst.width;++x)
{
unsigned long srcx=(x*xrIntFloat_16)>>16;
unsigned long srcy=(y*yrIntFloat_16)>>16;
Pixels(Dst,x,y)=Pixels(Src,srcx,srcy);
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom2 185.8 fps
////////////////////////////////////////////////////////////////////////////////
c. 在x的循环中y一直不变,那么可以提前计算与y相关的值; 1.可以发现srcy的值和x变量无关,可以提前到x轴循环之前;2.展开Pixels函数,优化与y相关的指针计算;
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
unsigned long xrIntFloat_16=(Src.width<<16)/Dst.width+1;
unsigned long yrIntFloat_16=(Src.height<<16)/Dst.height+1;
TARGB32* pDstLine=Dst.pdata;
unsigned long srcy_16=0;
for (unsigned long y=0;y<Dst.height;++y)
{
TARGB32* pSrcLine=((TARGB32*)((TUInt8*)Src.pdata+Src.byte_width*(srcy_16>>16)));
unsigned long srcx_16=0;
for (unsigned long x=0;x<dst_width;++x)
{
pDstLine[x]=pSrcLine[srcx_16>>16];
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom3 414.4 fps
////////////////////////////////////////////////////////////////////////////////
d.定点数优化使函数能够处理的最大图片尺寸和缩放结果(肉眼不可察觉的误差)受到了一
定的影响,这里给出一个使用浮点运算的版本,可以在有这种需求的场合使用:
{
//注意: 该函数需要FPU支持
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
double xrFloat=1.000000001/((double)Dst.width/Src.width);
double yrFloat=1.000000001/((double)Dst.height/Src.height);
unsigned short RC_Old;
unsigned short RC_Edit;
asm //设置FPU的取整方式 为了直接使用fist浮点指令
{
FNSTCW RC_Old // 保存协处理器控制字,用来恢复
FNSTCW RC_Edit // 保存协处理器控制字,用来修改
FWAIT
OR RC_Edit, 0x0F00 // 改为 RC=11 使FPU向零取整
FLDCW RC_Edit // 载入协处理器控制字,RC场已经修改
}
unsigned long dst_width=Dst.width;
TARGB32* pDstLine=Dst.pdata;
double srcy=0;
for (unsigned long y=0;y<Dst.height;++y)
{
TARGB32* pSrcLine=((TARGB32*)((TUInt8*)Src.pdata+Src.byte_width*((long)srcy)));
/**//*
double srcx=0;
for (unsigned long x=0;x<dst_width;++x)
{
pDstLine[x]=pSrcLine[(unsigned long)srcx];//因为默认的浮点取整是一个很慢
//的操作! 所以才使用了直接操作FPU的内联汇编代码。
srcx+=xrFloat;
}*/
asm fld xrFloat //st0==xrFloat
asm fldz //st0==0 st1==xrFloat
unsigned long srcx=0;
for (long x=0;x<dst_width;++x)
{
asm fist dword ptr srcx //srcx=(long)st0
pDstLine[x]=pSrcLine[srcx];
asm fadd st,st(1) //st0+=st1 st1==xrFloat
}
asm fstp st
asm fstp st
srcy+=yrFloat;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
asm //恢复FPU的取整方式
{
FWAIT
FLDCW RC_Old
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom3_float 286.2 fps
////////////////////////////////////////////////////////////////////////////////
e.注意到这样一个事实:每一行的缩放比例是固定的;那么可以预先建立一个缩放映射表格
来处理缩放映射算法(PicZoom3_Table和PicZoom3_float的实现等价);
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
unsigned long dst_width=Dst.width;
unsigned long* SrcX_Table = new unsigned long[dst_width];
for (unsigned long x=0;x<dst_width;++x)//生成表 SrcX_Table
{
SrcX_Table[x]=(x*Src.width/Dst.width);
}
TARGB32* pDstLine=Dst.pdata;
for (unsigned long y=0;y<Dst.height;++y)
{
unsigned long srcy=(y*Src.height/Dst.height);
TARGB32* pSrcLine=((TARGB32*)((TUInt8*)Src.pdata+Src.byte_width*srcy));
for (unsigned long x=0;x<dst_width;++x)
pDstLine[x]=pSrcLine[SrcX_Table[x]];
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
delete [] SrcX_Table;
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom3_Table 390.1 fps
////////////////////////////////////////////////////////////////////////////////
f.为了加快缩放,可以采用根据缩放比例动态生成函数的方式来得到更快的缩放函数;这
有点像编译器的工作原理;要实现它需要的工作量比较大(或比较晦涩)就不再实现了;
(动态生成是一种不错的思路,但个人觉得对于缩放,实现它的必要性不大)
g.现代CPU中,在读取数据和写入数据时,都有自动的缓存机制;很容易知道,算法中生
成的数据不会很快再次使用,所以不需要写入缓存的帮助;在SSE指令集中增加了movntq
等指令来完成这个功能;
(尝试过利用CPU显式prefetcht0、prefetchnta预读指令或直接的mov读取指令等速度反
而略有下降:( 但预读在copy算法中速度优化效果很明显 )
{
//警告: 函数需要CPU支持MMX和movntq指令
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
unsigned long xrIntFloat_16=(Src.width<<16)/Dst.width+1;
unsigned long yrIntFloat_16=(Src.height<<16)/Dst.height+1;
unsigned long dst_width=Dst.width;
TARGB32* pDstLine=Dst.pdata;
unsigned long srcy_16=0;
for (unsigned long y=0;y<Dst.height;++y)
{
TARGB32* pSrcLine=((TARGB32*)((TUInt8*)Src.pdata+Src.byte_width*(srcy_16>>16)));
asm
{
push ebp
mov esi,pSrcLine
mov edi,pDstLine
mov edx,xrIntFloat_16
mov ecx,dst_width
xor ebp,ebp //srcx_16=0
and ecx, (not 3) //循环4次展开
TEST ECX,ECX //nop
jle EndWriteLoop
lea edi,[edi+ecx*4]
neg ecx
//todo: 预读
WriteLoop:
mov eax,ebp
shr eax,16 //srcx_16>>16
lea ebx,[ebp+edx]
movd mm0,[esi+eax*4]
shr ebx,16 //srcx_16>>16
PUNPCKlDQ mm0,[esi+ebx*4]
lea ebp,[ebp+edx*2]
// movntq qword ptr [edi+ecx*4], mm0 //不使用缓存的写入指令
asm _emit 0x0F asm _emit 0xE7 asm _emit 0x04 asm _emit 0x8F
mov eax,ebp
shr eax,16 //srcx_16>>16
lea ebx,[ebp+edx]
movd mm1,[esi+eax*4]
shr ebx,16 //srcx_16>>16
PUNPCKlDQ mm1,[esi+ebx*4]
lea ebp,[ebp+edx*2]
// movntq qword ptr [edi+ecx*4+8], mm1 //不使用缓存的写入指令
asm _emit 0x0F asm _emit 0xE7 asm _emit 0x4C asm _emit 0x8F asm _emit 0x08
add ecx, 4
jnz WriteLoop
//sfence //刷新写入
asm _emit 0x0F asm _emit 0xAE asm _emit 0xF8
emms
EndWriteLoop:
mov ebx,ebp
pop ebp
//处理边界 循环次数为0,1,2,3;(这个循环可以展开,做一个跳转表,略)
mov ecx,dst_width
and ecx,3
TEST ECX,ECX
jle EndLineZoom
lea edi,[edi+ecx*4]
neg ecx
StartBorder:
mov eax,ebx
shr eax,16 //srcx_16>>16
mov eax,[esi+eax*4]
mov [edi+ecx*4],eax
add ebx,edx
inc ECX
JNZ StartBorder
EndLineZoom:
}
//
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
//读者可以相互对照来阅读代码
//要编译PicZoom3_SSE_mmh,需要#include <mmintrin.h> #include <xmmintrin.h>
//并且需要编译器支持
//函数PicZoom3_SSE_mmh速度为 593.7 fps
{
//警告: 函数需要CPU支持MMX和movntq指令
||(0==Src.width)||(0==Src.height)) return;
unsigned long yrIntFloat_16=(Src.height<<16)/Dst.height+1;
TARGB32* pDstLine=Dst.pdata;
unsigned long srcy_16=0;
unsigned long for4count=dst_width/4*4;
for (unsigned long y=0;y<Dst.height;++y)
{
TARGB32* pSrcLine=((TARGB32*)((TUInt8*)Src.pdata+Src.byte_width*(srcy_16>>16)));
unsigned long srcx_16=0;
unsigned long x;
for (x=0;x<for4count;x+=4)//循环4次展开
{
__m64 m0=_m_from_int(*(int*)(&pSrcLine[srcx_16>>16]));
srcx_16+=xrIntFloat_16;
m0=_m_punpckldq(m0, _m_from_int(*(int*)(&pSrcLine[srcx_16>>16])) );
srcx_16+=xrIntFloat_16;
__m64 m1=_m_from_int(*(int*)(&pSrcLine[srcx_16>>16]));
srcx_16+=xrIntFloat_16;
m1=_m_punpckldq(m1, _m_from_int(*(int*)(&pSrcLine[srcx_16>>16])) );
srcx_16+=xrIntFloat_16;
_mm_stream_pi((__m64 *)&pDstLine[x],m0); //不使用缓存的写入指令
_mm_stream_pi((__m64 *)&pDstLine[x+2],m1); //不使用缓存的写入指令
}
for (x=for4count;x<dst_width;++x)//处理边界
{
pDstLine[x]=pSrcLine[srcx_16>>16];
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
_m_empty();
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom3_SSE 711.7 fps
////////////////////////////////////////////////////////////////////////////////
E: 缩放效果图:
原图 放大图(x轴放大8倍,y轴放大12倍)
原图 缩小图(缩小到0.66倍) 放大图(放大到1.6倍)
F: 把测试成绩放在一起:
////////////////////////////////////////////////////////////////////////////////
//CPU: AMD64x2 4200+(2.1G) zoom 800*600 to 1024*768
//==============================================================================
// BitBlt 544.7 fps //is copy 800*600 to 800*600
// BitBlt 331.6 fps //is copy 1024*1024 to 1024*1024
// StretchBlt 232.7 fps //is zoom 800*600 to 1024*1024
//
// PicZoom0 19.4 fps
// PicZoom1 30.1 fps
// PicZoom2 185.8 fps
// PicZoom3 414.4 fps
// PicZoom3_float 286.2 fps
// PicZoom3_Table 390.1 fps
// PicZoom3_SSE 711.7 fps
////////////////////////////////////////////////////////////////////////////////
补充Intel Core2 4400上的测试成绩:
////////////////////////////////////////////////////////////////////////////////
//CPU: Intel Core2 4400(2.00G) zoom 800*600 to 1024*768
//==============================================================================
// PicZoom0 15.0 fps
// PicZoom1 63.9 fps
// PicZoom2 231.2 fps
// PicZoom3 460.5 fps
// PicZoom3_float 422.5 fps
// PicZoom3_Table 457.6 fps
// PicZoom3_SSE 1099.7 fps
////////////////////////////////////////////////////////////////////////////////
摘要:首先给出一个基本的图像缩放算法,然后一步一步的优化其速度和缩放质量;
高质量的快速的图像缩放 全文 分为:
上篇 近邻取样插值和其速度优化
中篇 二次线性插值和三次卷积插值
下篇 三次线性插值和MipMap链
正文:
为了便于讨论,这里只处理32bit的ARGB颜色;
代码使用C++;涉及到汇编优化的时候假定为x86平台;使用的编译器为vc2005;
为了代码的可读性,没有加入异常处理代码;
测试使用的CPU为AMD64x2 4200+(2.37G) 和 Intel Core2 4400(2.00G);
速度测试说明:
只测试内存数据到内存数据的缩放
测试图片都是800*600缩放到1024*768; fps表示每秒钟的帧数,值越大表示函数越快
A:近邻取样插值、二次线性插值、三次卷积插值 缩放效果对比
原图 近邻取样缩放到0.6倍 近邻取样缩放到1.6倍
二次线性插值缩放到0.6倍 二次线性插值缩放到1.6倍
三次卷积插值缩放到0.6倍 三次卷积插值缩放到1.6倍
原图 近邻取样缩放到8倍 二次线性插值缩放到8倍 三次卷积插值缩放到8倍 二次线性插值(近似公式)
近邻取样插值缩放简单、速度快,但很多时候缩放出的图片质量比较差(特别是对于人物、景色等),
图片的缩放有比较明显的锯齿;使用二次或更高次插值有利于改善缩放效果;
B: 首先定义图像数据结构:
typedef unsigned char TUInt8; // [0..255]
struct TARGB32 //32 bit color
{
TUInt8 b,g,r,a; //a is alpha
};
struct TPicRegion //一块颜色数据区的描述,便于参数传递
{
TARGB32* pdata; //颜色数据首地址
long byte_width; //一行数据的物理宽度(字节宽度);
//abs(byte_width)有可能大于等于width*sizeof(TARGB32);
long width; //像素宽度
long height; //像素高度
};
//那么访问一个点的函数可以写为:
inline TARGB32& Pixels(const TPicRegion& pic,const long x,const long y)
{
return ( (TARGB32*)((TUInt8*)pic.pdata+pic.byte_width*y) )[x];
}
二次线性插值缩放:
C: 二次线性插值缩放原理和公式图示:
缩放后图片 原图片
(宽DW,高DH) (宽SW,高SH)
缩放映射原理:
(Sx-0)/(SW-0)=(Dx-0)/(DW-0) (Sy-0)/(SH-0)=(Dy-0)/(DH-0)
=> Sx=Dx*SW/DW Sy=Dy*SH/DH
聚焦看看(Sx,Sy)坐标点(Sx,Sy为浮点数)附近的情况;
对于近邻取样插值的缩放算法,直接取Color0颜色作为缩放后点的颜色;
二次线性插值需要考虑(Sx,Sy)坐标点周围的4个颜色值Color0\Color1\Color2\Color3,
把(Sx,Sy)到A\B\C\D坐标点的距离作为系数来把4个颜色混合出缩放后点的颜色;
( u=Sx-floor(Sx); v=Sy-floor(Sy); 说明:floor函数的返回值为小于等于参数的最大整数 )
二次线性插值公式为:
tmpColor0=Color0*(1-u) + Color2*u;
tmpColor1=Color1*(1-u) + Color3*u;
DstColor =tmpColor0*(1-v) + tmpColor2*v;
展开公式为:
pm0=(1-u)*(1-v);
pm1=v*(1-u);
pm2=u*(1-v);
pm3=u*v;
则颜色混合公式为:
DstColor = Color0*pm0 + Color1*pm1 + Color2*pm2 + Color3*pm3;
参数函数图示:
二次线性插值函数图示
对于上面的公式,它将图片向右下各移动了半个像素,需要对此做一个修正;
=> Sx=(Dx+0.5)*SW/DW-0.5; Sy=(Dy+0.5)*SH/DH-0.5;
而实际的程序,还需要考虑到边界(访问源图片可能超界)对于算法的影响,边界的处理可能有各种
方案(不处理边界或边界回绕或边界饱和或边界映射或用背景颜色混合等;文章中默认使用边界饱和来处理超界);
比如:边界饱和函数:
inline TARGB32 Pixels_Bound(const TPicRegion& pic,long x,long y)
{
//assert((pic.width>0)&&(pic.height>0));
bool IsInPic=true;
if (x<0) {x=0; IsInPic=false; } else if (x>=pic.width ) {x=pic.width -1; IsInPic=false; }
if (y<0) {y=0; IsInPic=false; } else if (y>=pic.height) {y=pic.height-1; IsInPic=false; }
TARGB32 result=Pixels(pic,x,y);
if (!IsInPic) result.a=0;
return result;
}
D: 二次线性插值缩放算法的一个参考实现:PicZoom_BilInear0
该函数并没有做什么优化,只是一个简单的浮点实现版本;
{
long x=(long)fx; if (x>fx) --x; //x=floor(fx);
long y=(long)fy; if (y>fy) --y; //y=floor(fy);
TARGB32 Color0=Pixels_Bound(pic,x,y);
TARGB32 Color2=Pixels_Bound(pic,x+1,y);
TARGB32 Color1=Pixels_Bound(pic,x,y+1);
TARGB32 Color3=Pixels_Bound(pic,x+1,y+1);
float u=fx-x;
float v=fy-y;
float pm3=u*v;
float pm2=u*(1-v);
float pm1=v*(1-u);
float pm0=(1-u)*(1-v);
result->a=(pm0*Color0.a+pm1*Color1.a+pm2*Color2.a+pm3*Color3.a);
result->r=(pm0*Color0.r+pm1*Color1.r+pm2*Color2.r+pm3*Color3.r);
result->g=(pm0*Color0.g+pm1*Color1.g+pm2*Color2.g+pm3*Color3.g);
result->b=(pm0*Color0.b+pm1*Color1.b+pm2*Color2.b+pm3*Color3.b);
}
void PicZoom_Bilinear0(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
unsigned long dst_width=Dst.width;
TARGB32* pDstLine=Dst.pdata;
for (unsigned long y=0;y<Dst.height;++y)
{
float srcy=(y+0.4999999)*Src.height/Dst.height-0.5;
for (unsigned long x=0;x<dst_width;++x)
{
float srcx=(x+0.4999999)*Src.width/Dst.width-0.5;
Bilinear0(Src,srcx,srcy,&pDstLine[x]);
}
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_BilInear0 8.3 fps
////////////////////////////////////////////////////////////////////////////////
E: 把PicZoom_BilInear0的浮点计算改写为定点数实现:PicZoom_BilInear1
{
long x=x_16>>16;
long y=y_16>>16;
TARGB32 Color0=Pixels_Bound(pic,x,y);
TARGB32 Color2=Pixels_Bound(pic,x+1,y);
TARGB32 Color1=Pixels_Bound(pic,x,y+1);
TARGB32 Color3=Pixels_Bound(pic,x+1,y+1);
unsigned long u_8=(x_16 & 0xFFFF)>>8;
unsigned long v_8=(y_16 & 0xFFFF)>>8;
unsigned long pm3_16=(u_8*v_8);
unsigned long pm2_16=(u_8*(unsigned long)(256-v_8));
unsigned long pm1_16=(v_8*(unsigned long)(256-u_8));
unsigned long pm0_16=((256-u_8)*(256-v_8));
result->a=((pm0_16*Color0.a+pm1_16*Color1.a+pm2_16*Color2.a+pm3_16*Color3.a)>>16);
result->r=((pm0_16*Color0.r+pm1_16*Color1.r+pm2_16*Color2.r+pm3_16*Color3.r)>>16);
result->g=((pm0_16*Color0.g+pm1_16*Color1.g+pm2_16*Color2.g+pm3_16*Color3.g)>>16);
result->b=((pm0_16*Color0.b+pm1_16*Color1.b+pm2_16*Color2.b+pm3_16*Color3.b)>>16);
}
void PicZoom_Bilinear1(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
long xrIntFloat_16=((Src.width)<<16)/Dst.width+1;
long yrIntFloat_16=((Src.height)<<16)/Dst.height+1;
const long csDErrorX=-(1<<15)+(xrIntFloat_16>>1);
const long csDErrorY=-(1<<15)+(yrIntFloat_16>>1);
unsigned long dst_width=Dst.width;
TARGB32* pDstLine=Dst.pdata;
long srcy_16=csDErrorY;
long y;
for (y=0;y<Dst.height;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear1(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_BilInear1 17.7 fps
////////////////////////////////////////////////////////////////////////////////
F: 二次线性插值需要考略边界访问超界的问题,我们可以将边界区域和内部区域分开处理,这样就可以优化内部的插值实现函数了:比如不需要判断访问超界、减少颜色数据复制、减少一些不必要的重复坐标计算等等
{
unsigned long pm3_16=u_8*v_8;
unsigned long pm2_16=(u_8<<8)-pm3_16;
unsigned long pm1_16=(v_8<<8)-pm3_16;
unsigned long pm0_16=(1<<16)-pm1_16-pm2_16-pm3_16;
result->a=((pm0_16*PColor0[0].a+pm2_16*PColor0[1].a+pm1_16*PColor1[0].a+pm3_16*PColor1[1].a)>>16);
result->r=((pm0_16*PColor0[0].r+pm2_16*PColor0[1].r+pm1_16*PColor1[0].r+pm3_16*PColor1[1].r)>>16);
result->g=((pm0_16*PColor0[0].g+pm2_16*PColor0[1].g+pm1_16*PColor1[0].g+pm3_16*PColor1[1].g)>>16);
result->b=((pm0_16*PColor0[0].b+pm2_16*PColor0[1].b+pm1_16*PColor1[0].b+pm3_16*PColor1[1].b)>>16);
}
inline void Bilinear2_Border(const TPicRegion& pic,const long x_16,const long y_16,TARGB32* result)
{
long x=(x_16>>16);
long y=(y_16>>16);
unsigned long u_16=((unsigned short)(x_16));
unsigned long v_16=((unsigned short)(y_16));
TARGB32 pixel[4];
pixel[0]=Pixels_Bound(pic,x,y);
pixel[1]=Pixels_Bound(pic,x+1,y);
pixel[2]=Pixels_Bound(pic,x,y+1);
pixel[3]=Pixels_Bound(pic,x+1,y+1);
Bilinear2_Fast(&pixel[0],&pixel[2],u_16>>8,v_16>>8,result);
}
void PicZoom_Bilinear2(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
long xrIntFloat_16=((Src.width)<<16)/Dst.width+1;
long yrIntFloat_16=((Src.height)<<16)/Dst.height+1;
const long csDErrorX=-(1<<15)+(xrIntFloat_16>>1);
const long csDErrorY=-(1<<15)+(yrIntFloat_16>>1);
unsigned long dst_width=Dst.width;
//计算出需要特殊处理的边界
long border_y0=-csDErrorY/yrIntFloat_16+1; //y0+y*yr>=0; y0=csDErrorY => y>=-csDErrorY/yr
if (border_y0>=Dst.height) border_y0=Dst.height;
long border_x0=-csDErrorX/xrIntFloat_16+1;
if (border_x0>=Dst.width ) border_x0=Dst.width;
long border_y1=(((Src.height-2)<<16)-csDErrorY)/yrIntFloat_16+1; //y0+y*yr<=(height-2) => y<=(height-2-csDErrorY)/yr
if (border_y1<border_y0) border_y1=border_y0;
long border_x1=(((Src.width-2)<<16)-csDErrorX)/xrIntFloat_16+1;
if (border_x1<border_x0) border_x1=border_x0;
TARGB32* pDstLine=Dst.pdata;
long Src_byte_width=Src.byte_width;
long srcy_16=csDErrorY;
long y;
for (y=0;y<border_y0;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear2_Border(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y0;y<border_y1;++y)
{
long srcx_16=csDErrorX;
long x;
for (x=0;x<border_x0;++x)
{
Bilinear2_Border(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
{
unsigned long v_8=(srcy_16 & 0xFFFF)>>8;
TARGB32* PSrcLineColor= (TARGB32*)((TUInt8*)(Src.pdata)+Src_byte_width*(srcy_16>>16)) ;
for (unsigned long x=border_x0;x<border_x1;++x)
{
TARGB32* PColor0=&PSrcLineColor[srcx_16>>16];
TARGB32* PColor1=(TARGB32*)((TUInt8*)(PColor0)+Src_byte_width);
Bilinear2_Fast(PColor0,PColor1,(srcx_16 & 0xFFFF)>>8,v_8,&pDstLine[x]);
srcx_16+=xrIntFloat_16;
}
}
for (x=border_x1;x<dst_width;++x)
{
Bilinear2_Border(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y1;y<Dst.height;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear2_Border(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_BilInear2 43.4 fps
////////////////////////////////////////////////////////////////////////////////
(F‘补充:
如果不想处理边界访问超界问题,可以考虑扩大源图片的尺寸,加一个边框 (“哨兵”优化);
这样插值算法就不用考虑边界问题了,程序写起来也简单很多!
如果对缩放结果的边界像素级精度要求不是太高,我还有一个方案,一个稍微改变的缩放公式:
Sx=Dx*(SW-1)/DW; Sy=Dy*(SH-1)/DH; (源图片宽和高:SW>=2;SH>=2)
证明这个公式不会造成内存访问超界:
要求Dx=DW-1时: sx+1=int( (dw-1)/dw*(dw-1) ) +1 <= (sw-1)
有: int( (sw-1)*(dw-1)/dw ) <=sw-2
(sw-1)*(dw-1)/dw <(sw-1)
(dw-1) /dw<1
(dw-1) <dw
比如,按这个公式的一个简单实现: (缩放效果见前面的"二次线性插值(近似公式)"图示)
{
if ( (0==Dst.width)||(0==Dst.height)
||(2>Src.width)||(2>Src.height)) return;
long xrIntFloat_16=((Src.width-1)<<16)/Dst.width;
long yrIntFloat_16=((Src.height-1)<<16)/Dst.height;
unsigned long dst_width=Dst.width;
long Src_byte_width=Src.byte_width;
TARGB32* pDstLine=Dst.pdata;
long srcy_16=0;
for (unsigned long y=0;y<Dst.height;++y)
{
unsigned long v_8=(srcy_16 & 0xFFFF)>>8;
TARGB32* PSrcLineColor= (TARGB32*)((TUInt8*)(Src.pdata)+Src_byte_width*(srcy_16>>16)) ;
long srcx_16=0;
for (unsigned long x=0;x<dst_width;++x)
{
TARGB32* PColor0=&PSrcLineColor[srcx_16>>16];
Bilinear_Fast_Common(PColor0,(TARGB32*)((TUInt8*)(PColor0)+Src_byte_width),(srcx_16 & 0xFFFF)>>8,v_8,&pDstLine[x]);
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
)
G:利用单指令多数据处理的MMX指令一般都可以加快颜色的运算;在使用MMX改写之前,利用
32bit寄存器(或变量)来模拟单指令多数据处理;
数据储存原理:一个颜色数据分量只有一个字节,用2个字节来储存单个颜色分量的计算结果,
对于很多颜色计算来说精度就够了;那么一个32bit寄存器(或变量)就可以储存2个计算出的
临时颜色分量;从而达到了单个指令两路数据处理的目的;
单个指令两路数据处理的计算:
乘法: ((0x00AA*a)<<16) | (0x00BB*a) = 0x00AA00BB * a
可见只要保证0x00AA*a和0x00BB*a都小于(1<<16)那么乘法可以直接使用无符号数乘法了
加法: ((0x00AA+0x00CC)<<16) | (0x00BB+0x00DD) = 0x00AA00BB + 0x00CC00DD
可见只要0x00AA+0x00CC和0x00BB+0x00DD小于(1<<16)那么加法可以直接使用无符号数加法了
(移位、减法等稍微复杂一点,因为这里没有用到就不推倒运算公式了)
{
unsigned long pm3_8=(u_8*v_8)>>8;
unsigned long pm2_8=u_8-pm3_8;
unsigned long pm1_8=v_8-pm3_8;
unsigned long pm0_8=256-pm1_8-pm2_8-pm3_8;
unsigned long Color=*(unsigned long*)(PColor0);
unsigned long BR=(Color & 0x00FF00FF)*pm0_8;
unsigned long GA=((Color & 0xFF00FF00)>>8)*pm0_8;
Color=((unsigned long*)(PColor0))[1];
GA+=((Color & 0xFF00FF00)>>8)*pm2_8;
BR+=(Color & 0x00FF00FF)*pm2_8;
Color=*(unsigned long*)(PColor1);
GA+=((Color & 0xFF00FF00)>>8)*pm1_8;
BR+=(Color & 0x00FF00FF)*pm1_8;
Color=((unsigned long*)(PColor1))[1];
GA+=((Color & 0xFF00FF00)>>8)*pm3_8;
BR+=(Color & 0x00FF00FF)*pm3_8;
*(unsigned long*)(result)=(GA & 0xFF00FF00)|((BR & 0xFF00FF00)>>8);
}
inline void Bilinear_Border_Common(const TPicRegion& pic,const long x_16,const long y_16,TARGB32* result)
{
long x=(x_16>>16);
long y=(y_16>>16);
unsigned long u_16=((unsigned short)(x_16));
unsigned long v_16=((unsigned short)(y_16));
TARGB32 pixel[4];
pixel[0]=Pixels_Bound(pic,x,y);
pixel[1]=Pixels_Bound(pic,x+1,y);
pixel[2]=Pixels_Bound(pic,x,y+1);
pixel[3]=Pixels_Bound(pic,x+1,y+1);
Bilinear_Fast_Common(&pixel[0],&pixel[2],u_16>>8,v_16>>8,result);
}
void PicZoom_Bilinear_Common(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
long xrIntFloat_16=((Src.width)<<16)/Dst.width+1;
long yrIntFloat_16=((Src.height)<<16)/Dst.height+1;
const long csDErrorX=-(1<<15)+(xrIntFloat_16>>1);
const long csDErrorY=-(1<<15)+(yrIntFloat_16>>1);
unsigned long dst_width=Dst.width;
//计算出需要特殊处理的边界
long border_y0=-csDErrorY/yrIntFloat_16+1; //y0+y*yr>=0; y0=csDErrorY => y>=-csDErrorY/yr
if (border_y0>=Dst.height) border_y0=Dst.height;
long border_x0=-csDErrorX/xrIntFloat_16+1;
if (border_x0>=Dst.width ) border_x0=Dst.width;
long border_y1=(((Src.height-2)<<16)-csDErrorY)/yrIntFloat_16+1; //y0+y*yr<=(height-2) => y<=(height-2-csDErrorY)/yr
if (border_y1<border_y0) border_y1=border_y0;
long border_x1=(((Src.width-2)<<16)-csDErrorX)/xrIntFloat_16+1;
if (border_x1<border_x0) border_x1=border_x0;
TARGB32* pDstLine=Dst.pdata;
long Src_byte_width=Src.byte_width;
long srcy_16=csDErrorY;
long y;
for (y=0;y<border_y0;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y0;y<border_y1;++y)
{
long srcx_16=csDErrorX;
long x;
for (x=0;x<border_x0;++x)
{
Bilinear_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
{
unsigned long v_8=(srcy_16 & 0xFFFF)>>8;
TARGB32* PSrcLineColor= (TARGB32*)((TUInt8*)(Src.pdata)+Src_byte_width*(srcy_16>>16)) ;
for (unsigned long x=border_x0;x<border_x1;++x)
{
TARGB32* PColor0=&PSrcLineColor[srcx_16>>16];
TARGB32* PColor1=(TARGB32*)((TUInt8*)(PColor0)+Src_byte_width);
Bilinear_Fast_Common(PColor0,PColor1,(srcx_16 & 0xFFFF)>>8,v_8,&pDstLine[x]);
srcx_16+=xrIntFloat_16;
}
}
for (x=border_x1;x<dst_width;++x)
{
Bilinear_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y1;y<Dst.height;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_BilInear_Common 65.3 fps
////////////////////////////////////////////////////////////////////////////////
H:使用MMX指令改写:PicZoom_Bilinear_MMX
{
asm
{
MOVD MM6,v_8
MOVD MM5,u_8
mov edx,PColor0
mov eax,PColor1
PXOR mm7,mm7
MOVD MM2,dword ptr [eax]
MOVD MM0,dword ptr [eax+4]
PUNPCKLWD MM5,MM5
PUNPCKLWD MM6,MM6
MOVD MM3,dword ptr [edx]
MOVD MM1,dword ptr [edx+4]
PUNPCKLDQ MM5,MM5
PUNPCKLBW MM0,MM7
PUNPCKLBW MM1,MM7
PUNPCKLBW MM2,MM7
PUNPCKLBW MM3,MM7
PSUBw MM0,MM2
PSUBw MM1,MM3
PSLLw MM2,8
PSLLw MM3,8
PMULlw MM0,MM5
PMULlw MM1,MM5
PUNPCKLDQ MM6,MM6
PADDw MM0,MM2
PADDw MM1,MM3
PSRLw MM0,8
PSRLw MM1,8
PSUBw MM0,MM1
PSLLw MM1,8
PMULlw MM0,MM6
mov eax,result
PADDw MM0,MM1
PSRLw MM0,8
PACKUSwb MM0,MM7
movd [eax],MM0
//emms
}
}
void Bilinear_Border_MMX(const TPicRegion& pic,const long x_16,const long y_16,TARGB32* result)
{
long x=(x_16>>16);
long y=(y_16>>16);
unsigned long u_16=((unsigned short)(x_16));
unsigned long v_16=((unsigned short)(y_16));
TARGB32 pixel[4];
pixel[0]=Pixels_Bound(pic,x,y);
pixel[1]=Pixels_Bound(pic,x+1,y);
pixel[2]=Pixels_Bound(pic,x,y+1);
pixel[3]=Pixels_Bound(pic,x+1,y+1);
Bilinear_Fast_MMX(&pixel[0],&pixel[2],u_16>>8,v_16>>8,result);
}
void PicZoom_Bilinear_MMX(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
long xrIntFloat_16=((Src.width)<<16)/Dst.width+1;
long yrIntFloat_16=((Src.height)<<16)/Dst.height+1;
const long csDErrorX=-(1<<15)+(xrIntFloat_16>>1);
const long csDErrorY=-(1<<15)+(yrIntFloat_16>>1);
unsigned long dst_width=Dst.width;
//计算出需要特殊处理的边界
long border_y0=-csDErrorY/yrIntFloat_16+1; //y0+y*yr>=0; y0=csDErrorY => y>=-csDErrorY/yr
if (border_y0>=Dst.height) border_y0=Dst.height;
long border_x0=-csDErrorX/xrIntFloat_16+1;
if (border_x0>=Dst.width ) border_x0=Dst.width;
long border_y1=(((Src.height-2)<<16)-csDErrorY)/yrIntFloat_16+1; //y0+y*yr<=(height-2) => y<=(height-2-csDErrorY)/yr
if (border_y1<border_y0) border_y1=border_y0;
long border_x1=(((Src.width-2)<<16)-csDErrorX)/xrIntFloat_16+1;
if (border_x1<border_x0) border_x1=border_x0;
TARGB32* pDstLine=Dst.pdata;
long Src_byte_width=Src.byte_width;
long srcy_16=csDErrorY;
long y;
for (y=0;y<border_y0;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y0;y<border_y1;++y)
{
long srcx_16=csDErrorX;
long x;
for (x=0;x<border_x0;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
{
unsigned long v_8=(srcy_16 & 0xFFFF)>>8;
TARGB32* PSrcLineColor= (TARGB32*)((TUInt8*)(Src.pdata)+Src_byte_width*(srcy_16>>16)) ;
for (unsigned long x=border_x0;x<border_x1;++x)
{
TARGB32* PColor0=&PSrcLineColor[srcx_16>>16];
TARGB32* PColor1=(TARGB32*)((TUInt8*)(PColor0)+Src_byte_width);
Bilinear_Fast_MMX(PColor0,PColor1,(srcx_16 & 0xFFFF)>>8,v_8,&pDstLine[x]);
srcx_16+=xrIntFloat_16;
}
}
for (x=border_x1;x<dst_width;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y1;y<Dst.height;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
asm emms
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_BilInear_MMX 132.9 fps
////////////////////////////////////////////////////////////////////////////////
H‘ 对BilInear_MMX简单改进:PicZoom_Bilinear_MMX_Ex
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
long xrIntFloat_16=((Src.width)<<16)/Dst.width+1;
long yrIntFloat_16=((Src.height)<<16)/Dst.height+1;
const long csDErrorX=-(1<<15)+(xrIntFloat_16>>1);
const long csDErrorY=-(1<<15)+(yrIntFloat_16>>1);
unsigned long dst_width=Dst.width;
//计算出需要特殊处理的边界
long border_y0=-csDErrorY/yrIntFloat_16+1; //y0+y*yr>=0; y0=csDErrorY => y>=-csDErrorY/yr
if (border_y0>=Dst.height) border_y0=Dst.height;
long border_x0=-csDErrorX/xrIntFloat_16+1;
if (border_x0>=Dst.width ) border_x0=Dst.width;
long border_y1=(((Src.height-2)<<16)-csDErrorY)/yrIntFloat_16+1; //y0+y*yr<=(height-2) => y<=(height-2-csDErrorY)/yr
if (border_y1<border_y0) border_y1=border_y0;
long border_x1=(((Src.width-2)<<16)-csDErrorX)/xrIntFloat_16+1;
if (border_x1<border_x0) border_x1=border_x0;
TARGB32* pDstLine=Dst.pdata;
long Src_byte_width=Src.byte_width;
long srcy_16=csDErrorY;
long y;
for (y=0;y<border_y0;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y0;y<border_y1;++y)
{
long srcx_16=csDErrorX;
long x;
for (x=0;x<border_x0;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
{
long dst_width_fast=border_x1-border_x0;
if (dst_width_fast>0)
{
unsigned long v_8=(srcy_16 & 0xFFFF)>>8;
TARGB32* PSrcLineColor= (TARGB32*)((TUInt8*)(Src.pdata)+Src_byte_width*(srcy_16>>16)) ;
TARGB32* PSrcLineColorNext= (TARGB32*)((TUInt8*)(PSrcLineColor)+Src_byte_width) ;
TARGB32* pDstLine_Fast=&pDstLine[border_x0];
asm
{
movd mm6,v_8
pxor mm7,mm7 //mm7=0
PUNPCKLWD MM6,MM6
PUNPCKLDQ MM6,MM6//mm6=v_8
mov esi,PSrcLineColor
mov ecx,PSrcLineColorNext
mov edx,srcx_16
mov ebx,dst_width_fast
mov edi,pDstLine_Fast
lea edi,[edi+ebx*4]
push ebp
mov ebp,xrIntFloat_16
neg ebx
loop_start:
mov eax,edx
shl eax,16
shr eax,24
//== movzx eax,dh //eax=u_8
MOVD MM5,eax
mov eax,edx
shr eax,16 //srcx_16>>16
MOVD MM2,dword ptr [ecx+eax*4]
MOVD MM0,dword ptr [ecx+eax*4+4]
PUNPCKLWD MM5,MM5
MOVD MM3,dword ptr [esi+eax*4]
MOVD MM1,dword ptr [esi+eax*4+4]
PUNPCKLDQ MM5,MM5 //mm5=u_8
PUNPCKLBW MM0,MM7
PUNPCKLBW MM1,MM7
PUNPCKLBW MM2,MM7
PUNPCKLBW MM3,MM7
PSUBw MM0,MM2
PSUBw MM1,MM3
PSLLw MM2,8
PSLLw MM3,8
PMULlw MM0,MM5
PMULlw MM1,MM5
PADDw MM0,MM2
PADDw MM1,MM3
PSRLw MM0,8
PSRLw MM1,8
PSUBw MM0,MM1
PSLLw MM1,8
PMULlw MM0,MM6
PADDw MM0,MM1
PSRLw MM0,8
PACKUSwb MM0,MM7
MOVd dword ptr [edi+ebx*4],MM0 //write DstColor
add edx,ebp //srcx_16+=xrIntFloat_16
inc ebx
jnz loop_start
pop ebp
mov srcx_16,edx
}
}
}
for (x=border_x1;x<dst_width;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y1;y<Dst.height;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
Bilinear_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
asm emms
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_Bilinear_MMX_Ex 157.0 fps
////////////////////////////////////////////////////////////////////////////////
I: 把测试成绩放在一起:
////////////////////////////////////////////////////////////////////////////////
//CPU: AMD64x2 4200+(2.37G) zoom 800*600 to 1024*768
//==============================================================================
// StretchBlt 232.7 fps
// PicZoom3_SSE 711.7 fps
//
// PicZoom_BilInear0 8.3 fps
// PicZoom_BilInear1 17.7 fps
// PicZoom_BilInear2 43.4 fps
// PicZoom_BilInear_Common 65.3 fps
// PicZoom_BilInear_MMX 132.9 fps
// PicZoom_BilInear_MMX_Ex 157.0 fps
////////////////////////////////////////////////////////////////////////////////
补充Intel Core2 4400上的测试成绩:
////////////////////////////////////////////////////////////////////////////////
//CPU: Intel Core2 4400(2.00G) zoom 800*600 to 1024*768
//==============================================================================
// PicZoom3_SSE 1099.7 fps
//
// PicZoom_BilInear0 10.7 fps
// PicZoom_BilInear1 24.2 fps
// PicZoom_BilInear2 54.3 fps
// PicZoom_BilInear_Common 59.8 fps
// PicZoom_BilInear_MMX 118.4 fps
// PicZoom_BilInear_MMX_Ex 142.9 fps
////////////////////////////////////////////////////////////////////////////////
三次卷积插值:
J: 二次线性插值缩放出的图片很多时候让人感觉变得模糊(术语叫低通滤波),特别是在放大
的时候;使用三次卷积插值来改善插值结果;三次卷积插值考虑映射点周围16个点(4x4)的颜色来
计算最终的混合颜色,如图;
P(0,0)所在像素为映射的点,加上它周围的15个点,按一定系数混合得到最终输出结果;
混合公式参见PicZoom_ThreeOrder0的实现;
插值曲线公式sin(x*PI)/(x*PI),如图:
三次卷积插值曲线sin(x*PI)/(x*PI) (其中PI=3.1415926...)
K:三次卷积插值缩放算法的一个参考实现:PicZoom_ThreeOrder0
该函数并没有做过多的优化,只是一个简单的浮点实现版本;
inline double SinXDivX(double x)
{
//该函数计算插值曲线sin(x*PI)/(x*PI)的值 //PI=3.1415926535897932385;
//下面是它的近似拟合表达式
const float a = -1; //a还可以取 a=-2,-1,-0.75,-0.5等等,起到调节锐化或模糊程度的作用
if (x<0) x=-x; //x=abs(x);
double x2=x*x;
double x3=x2*x;
if (x<=1)
return (a+2)*x3 - (a+3)*x2 + 1;
else if (x<=2)
return a*x3 - (5*a)*x2 + (8*a)*x - (4*a);
else
return 0;
}
inline TUInt8 border_color(long Color)
{
if (Color<=0)
return 0;
else if (Color>=255)
return 255;
else
return Color;
}
void ThreeOrder0(const TPicRegion& pic,const float fx,const float fy,TARGB32* result)
{
long x0=(long)fx; if (x0>fx) --x0; //x0=floor(fx);
long y0=(long)fy; if (y0>fy) --y0; //y0=floor(fy);
float fu=fx-x0;
float fv=fy-y0;
TARGB32 pixel[16];
long i,j;
for (i=0;i<4;++i)
{
for (j=0;j<4;++j)
{
long x=x0-1+j;
long y=y0-1+i;
pixel[i*4+j]=Pixels_Bound(pic,x,y);
}
}
float afu[4],afv[4];
//
afu[0]=SinXDivX(1+fu);
afu[1]=SinXDivX(fu);
afu[2]=SinXDivX(1-fu);
afu[3]=SinXDivX(2-fu);
afv[0]=SinXDivX(1+fv);
afv[1]=SinXDivX(fv);
afv[2]=SinXDivX(1-fv);
afv[3]=SinXDivX(2-fv);
float sR=0,sG=0,sB=0,sA=0;
for (i=0;i<4;++i)
{
float aR=0,aG=0,aB=0,aA=0;
for (long j=0;j<4;++j)
{
aA+=afu[j]*pixel[i*4+j].a;
aR+=afu[j]*pixel[i*4+j].r;
aG+=afu[j]*pixel[i*4+j].g;
aB+=afu[j]*pixel[i*4+j].b;
}
sA+=aA*afv[i];
sR+=aR*afv[i];
sG+=aG*afv[i];
sB+=aB*afv[i];
}
result->a=border_color((long)(sA+0.5));
result->r=border_color((long)(sR+0.5));
result->g=border_color((long)(sG+0.5));
result->b=border_color((long)(sB+0.5));
}
void PicZoom_ThreeOrder0(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
unsigned long dst_width=Dst.width;
TARGB32* pDstLine=Dst.pdata;
for (unsigned long y=0;y<Dst.height;++y)
{
float srcy=(y+0.4999999)*Src.height/Dst.height-0.5;
for (unsigned long x=0;x<dst_width;++x)
{
float srcx=(x+0.4999999)*Src.width/Dst.width-0.5;
ThreeOrder0(Src,srcx,srcy,&pDstLine[x]);
}
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_ThreeOrder0 3.6 fps
////////////////////////////////////////////////////////////////////////////////
L: 使用定点数来优化缩放函数;边界和内部分开处理;对SinXDivX做一个查找表;对border_color做一个查找表;
class _CAutoInti_SinXDivX_Table {
private:
void _Inti_SinXDivX_Table()
{
for (long i=0;i<=(2<<8);++i)
SinXDivX_Table_8[i]=long(0.5+256*SinXDivX(i*(1.0/(256))))*1;
};
public:
_CAutoInti_SinXDivX_Table() { _Inti_SinXDivX_Table(); }
};
static _CAutoInti_SinXDivX_Table __tmp_CAutoInti_SinXDivX_Table;
//颜色查表
static TUInt8 _color_table[256*3];
static const TUInt8* color_table=&_color_table[256];
class _CAuto_inti_color_table
{
public:
_CAuto_inti_color_table() {
for (int i=0;i<256*3;++i)
_color_table[i]=border_color(i-256);
}
};
static _CAuto_inti_color_table _Auto_inti_color_table;
void ThreeOrder_Fast_Common(const TPicRegion& pic,const long x_16,const long y_16,TARGB32* result)
{
unsigned long u_8=(unsigned char)((x_16)>>8);
unsigned long v_8=(unsigned char)((y_16)>>8);
const TARGB32* pixel=&Pixels(pic,(x_16>>16)-1,(y_16>>16)-1);
long pic_byte_width=pic.byte_width;
long au_8[4],av_8[4];
//
au_8[0]=SinXDivX_Table_8[(1<<8)+u_8];
au_8[1]=SinXDivX_Table_8[u_8];
au_8[2]=SinXDivX_Table_8[(1<<8)-u_8];
au_8[3]=SinXDivX_Table_8[(2<<8)-u_8];
av_8[0]=SinXDivX_Table_8[(1<<8)+v_8];
av_8[1]=SinXDivX_Table_8[v_8];
av_8[2]=SinXDivX_Table_8[(1<<8)-v_8];
av_8[3]=SinXDivX_Table_8[(2<<8)-v_8];
long sR=0,sG=0,sB=0,sA=0;
for (long i=0;i<4;++i)
{
long aA=au_8[0]*pixel[0].a + au_8[1]*pixel[1].a + au_8[2]*pixel[2].a + au_8[3]*pixel[3].a;
long aR=au_8[0]*pixel[0].r + au_8[1]*pixel[1].r + au_8[2]*pixel[2].r + au_8[3]*pixel[3].r;
long aG=au_8[0]*pixel[0].g + au_8[1]*pixel[1].g + au_8[2]*pixel[2].g + au_8[3]*pixel[3].g;
long aB=au_8[0]*pixel[0].b + au_8[1]*pixel[1].b + au_8[2]*pixel[2].b + au_8[3]*pixel[3].b;
sA+=aA*av_8[i];
sR+=aR*av_8[i];
sG+=aG*av_8[i];
sB+=aB*av_8[i];
((TUInt8*&)pixel)+=pic_byte_width;
}
result->a=color_table[sA>>16];
result->r=color_table[sR>>16];
result->g=color_table[sG>>16];
result->b=color_table[sB>>16];
}
void ThreeOrder_Border_Common(const TPicRegion& pic,const long x_16,const long y_16,TARGB32* result)
{
long x0_sub1=(x_16>>16)-1;
long y0_sub1=(y_16>>16)-1;
unsigned long u_16_add1=((unsigned short)(x_16))+(1<<16);
unsigned long v_16_add1=((unsigned short)(y_16))+(1<<16);
TARGB32 pixel[16];
long i;
for (i=0;i<4;++i)
{
long y=y0_sub1+i;
pixel[i*4+0]=Pixels_Bound(pic,x0_sub1+0,y);
pixel[i*4+1]=Pixels_Bound(pic,x0_sub1+1,y);
pixel[i*4+2]=Pixels_Bound(pic,x0_sub1+2,y);
pixel[i*4+3]=Pixels_Bound(pic,x0_sub1+3,y);
}
TPicRegion npic;
npic.pdata =&pixel[0];
npic.byte_width=4*sizeof(TARGB32);
//npic.width =4;
//npic.height =4;
ThreeOrder_Fast_Common(npic,u_16_add1,v_16_add1,result);
}
void PicZoom_ThreeOrder_Common(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
long xrIntFloat_16=((Src.width)<<16)/Dst.width+1;
long yrIntFloat_16=((Src.height)<<16)/Dst.height+1;
const long csDErrorX=-(1<<15)+(xrIntFloat_16>>1);
const long csDErrorY=-(1<<15)+(yrIntFloat_16>>1);
unsigned long dst_width=Dst.width;
//计算出需要特殊处理的边界
long border_y0=((1<<16)-csDErrorY)/yrIntFloat_16+1;//y0+y*yr>=1; y0=csDErrorY => y>=(1-csDErrorY)/yr
if (border_y0>=Dst.height) border_y0=Dst.height;
long border_x0=((1<<16)-csDErrorX)/xrIntFloat_16+1;
if (border_x0>=Dst.width ) border_x0=Dst.width;
long border_y1=(((Src.height-3)<<16)-csDErrorY)/yrIntFloat_16+1; //y0+y*yr<=(height-3) => y<=(height-3-csDErrorY)/yr
if (border_y1<border_y0) border_y1=border_y0;
long border_x1=(((Src.width-3)<<16)-csDErrorX)/xrIntFloat_16+1;;
if (border_x1<border_x0) border_x1=border_x0;
TARGB32* pDstLine=Dst.pdata;
long srcy_16=csDErrorY;
long y;
for (y=0;y<border_y0;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
ThreeOrder_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y0;y<border_y1;++y)
{
long srcx_16=csDErrorX;
long x;
for (x=0;x<border_x0;++x)
{
ThreeOrder_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
for (x=border_x0;x<border_x1;++x)
{
ThreeOrder_Fast_Common(Src,srcx_16,srcy_16,&pDstLine[x]);//fast !
srcx_16+=xrIntFloat_16;
}
for (x=border_x1;x<dst_width;++x)
{
ThreeOrder_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y1;y<Dst.height;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
ThreeOrder_Border_Common(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_ThreeOrder_Common 16.9 fps
////////////////////////////////////////////////////////////////////////////////
M: 用MMX来优化ThreeOrder_Common函数:ThreeOrder_MMX
static TMMXData32 SinXDivX_Table_MMX[(2<<8)+1];
class _CAutoInti_SinXDivX_Table_MMX {
private:
void _Inti_SinXDivX_Table_MMX()
{
for (long i=0;i<=(2<<8);++i)
{
unsigned short t=long(0.5+(1<<14)*SinXDivX(i*(1.0/(256))));
unsigned long tl=t | (((unsigned long)t)<<16);
SinXDivX_Table_MMX[i]=tl;
}
};
public:
_CAutoInti_SinXDivX_Table_MMX() { _Inti_SinXDivX_Table_MMX(); }
};
static _CAutoInti_SinXDivX_Table_MMX __tmp_CAutoInti_SinXDivX_Table_MMX;
void __declspec(naked) _private_ThreeOrder_Fast_MMX()
{
asm
{
movd mm1,dword ptr [edx]
movd mm2,dword ptr [edx+4]
movd mm3,dword ptr [edx+8]
movd mm4,dword ptr [edx+12]
movd mm5,dword ptr [(offset SinXDivX_Table_MMX)+256*4+eax*4]
movd mm6,dword ptr [(offset SinXDivX_Table_MMX)+eax*4]
punpcklbw mm1,mm7
punpcklbw mm2,mm7
punpcklwd mm5,mm5
punpcklwd mm6,mm6
psllw mm1,7
psllw mm2,7
pmulhw mm1,mm5
pmulhw mm2,mm6
punpcklbw mm3,mm7
punpcklbw mm4,mm7
movd mm5,dword ptr [(offset SinXDivX_Table_MMX)+256*4+ecx*4]
movd mm6,dword ptr [(offset SinXDivX_Table_MMX)+512*4+ecx*4]
punpcklwd mm5,mm5
punpcklwd mm6,mm6
psllw mm3,7
psllw mm4,7
pmulhw mm3,mm5
pmulhw mm4,mm6
paddsw mm1,mm2
paddsw mm3,mm4
movd mm6,dword ptr [ebx] //v
paddsw mm1,mm3
punpcklwd mm6,mm6
pmulhw mm1,mm6
add edx,esi //+pic.byte_width
paddsw mm0,mm1
ret
}
}
inline void ThreeOrder_Fast_MMX(const TPicRegion& pic,const long x_16,const long y_16,TARGB32* result)
{
asm
{
mov ecx,pic
mov eax,y_16
mov ebx,x_16
movzx edi,ah //v_8
mov edx,[ecx+TPicRegion::pdata]
shr eax,16
mov esi,[ecx+TPicRegion::byte_width]
dec eax
movzx ecx,bh //u_8
shr ebx,16
imul eax,esi
lea edx,[edx+ebx*4-4]
add edx,eax //pixel
mov eax,ecx
neg ecx
pxor mm7,mm7 //0
//mov edx,pixel
pxor mm0,mm0 //result=0
//lea eax,auv_7
lea ebx,[(offset SinXDivX_Table_MMX)+256*4+edi*4]
call _private_ThreeOrder_Fast_MMX
lea ebx,[(offset SinXDivX_Table_MMX)+edi*4]
call _private_ThreeOrder_Fast_MMX
neg edi
lea ebx,[(offset SinXDivX_Table_MMX)+256*4+edi*4]
call _private_ThreeOrder_Fast_MMX
lea ebx,[(offset SinXDivX_Table_MMX)+512*4+edi*4]
call _private_ThreeOrder_Fast_MMX
psraw mm0,3
mov eax,result
packuswb mm0,mm7
movd [eax],mm0
//emms
}
}
void ThreeOrder_Border_MMX(const TPicRegion& pic,const long x_16,const long y_16,TARGB32* result)
{
unsigned long x0_sub1=(x_16>>16)-1;
unsigned long y0_sub1=(y_16>>16)-1;
long u_16_add1=((unsigned short)(x_16))+(1<<16);
long v_16_add1=((unsigned short)(y_16))+(1<<16);
TARGB32 pixel[16];
for (long i=0;i<4;++i)
{
long y=y0_sub1+i;
pixel[i*4+0]=Pixels_Bound(pic,x0_sub1 ,y);
pixel[i*4+1]=Pixels_Bound(pic,x0_sub1+1,y);
pixel[i*4+2]=Pixels_Bound(pic,x0_sub1+2,y);
pixel[i*4+3]=Pixels_Bound(pic,x0_sub1+3,y);
}
TPicRegion npic;
npic.pdata =&pixel[0];
npic.byte_width=4*sizeof(TARGB32);
//npic.width =4;
//npic.height =4;
ThreeOrder_Fast_MMX(npic,u_16_add1,v_16_add1,result);
}
void PicZoom_ThreeOrder_MMX(const TPicRegion& Dst,const TPicRegion& Src)
{
if ( (0==Dst.width)||(0==Dst.height)
||(0==Src.width)||(0==Src.height)) return;
long xrIntFloat_16=((Src.width)<<16)/Dst.width+1;
long yrIntFloat_16=((Src.height)<<16)/Dst.height+1;
const long csDErrorX=-(1<<15)+(xrIntFloat_16>>1);
const long csDErrorY=-(1<<15)+(yrIntFloat_16>>1);
unsigned long dst_width=Dst.width;
//计算出需要特殊处理的边界
long border_y0=((1<<16)-csDErrorY)/yrIntFloat_16+1;//y0+y*yr>=1; y0=csDErrorY => y>=(1-csDErrorY)/yr
if (border_y0>=Dst.height) border_y0=Dst.height;
long border_x0=((1<<16)-csDErrorX)/xrIntFloat_16+1;
if (border_x0>=Dst.width ) border_x0=Dst.width;
long border_y1=(((Src.height-3)<<16)-csDErrorY)/yrIntFloat_16+1; //y0+y*yr<=(height-3) => y<=(height-3-csDErrorY)/yr
if (border_y1<border_y0) border_y1=border_y0;
long border_x1=(((Src.width-3)<<16)-csDErrorX)/xrIntFloat_16+1;;
if (border_x1<border_x0) border_x1=border_x0;
TARGB32* pDstLine=Dst.pdata;
long srcy_16=csDErrorY;
long y;
for (y=0;y<border_y0;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
ThreeOrder_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y0;y<border_y1;++y)
{
long srcx_16=csDErrorX;
long x;
for (x=0;x<border_x0;++x)
{
ThreeOrder_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
for (x=border_x0;x<border_x1;++x)
{
ThreeOrder_Fast_MMX(Src,srcx_16,srcy_16,&pDstLine[x]);//fast MMX !
srcx_16+=xrIntFloat_16;
}
for (x=border_x1;x<dst_width;++x)
{
ThreeOrder_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]);//border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
for (y=border_y1;y<Dst.height;++y)
{
long srcx_16=csDErrorX;
for (unsigned long x=0;x<dst_width;++x)
{
ThreeOrder_Border_MMX(Src,srcx_16,srcy_16,&pDstLine[x]); //border
srcx_16+=xrIntFloat_16;
}
srcy_16+=yrIntFloat_16;
((TUInt8*&)pDstLine)+=Dst.byte_width;
}
asm emms
}
////////////////////////////////////////////////////////////////////////////////
//速度测试:
//==============================================================================
// PicZoom_ThreeOrder_MMX 34.3 fps
////////////////////////////////////////////////////////////////////////////////
N:将测试结果放到一起:
////////////////////////////////////////////////////////////////////////////////
//CPU: AMD64x2 4200+(2.37G) zoom 800*600 to 1024*768
//==============================================================================
// StretchBlt 232.7 fps
// PicZoom3_SSE 711.7 fps
// PicZoom_BilInear_MMX_Ex 157.0 fps
//
// PicZoom_ThreeOrder0 3.6 fps
// PicZoom_ThreeOrder_Common 16.9 fps
// PicZoom_ThreeOrder_MMX 34.3 fps
////////////////////////////////////////////////////////////////////////////////
补充Intel Core2 4400上的测试成绩:
////////////////////////////////////////////////////////////////////////////////
//CPU: Intel Core2 4400(2.00G) zoom 800*600 to 1024*768
//==============================================================================
// PicZoom3_SSE 1099.7 fps
// PicZoom_BilInear_MMX_Ex 142.9 fps
//
// PicZoom_ThreeOrder0 4.2 fps
// PicZoom_ThreeOrder_Common 17.6 fps
// PicZoom_ThreeOrder_MMX 34.4 fps
////////////////////////////////////////////////////////////////////////////////
摘要:首先给出一个基本的图像缩放算法,然后一步一步的优化其速度和缩放质量;
高质量的快速的图像缩放 全文 分为:
上篇 近邻取样插值和其速度优化
中篇 二次线性插值和三次卷积插值
下篇 三次线性插值和MipMap链
正文:
A:对于前一篇文章中的二次线性插值、三次卷积插值算法,但它们处理缩小到0.5倍以下的
时候效果就会越来越差;这是因为插值的时候自考虑了附近点的原因;如下图:
原图 近邻取样 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
二次线性插值 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
三次卷积插值 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
可以看出:当缩小的比例很大的时候,插值算法的效果和近邻取样的效果差不多了:( ;
一种可行的解决方案就是:缩小时考虑更多的点; 但这种解决方案有很多缺点:函数编写麻烦,
速度也许会很慢,优化也不容易做; 还有一个方案就是预先建立一个缩放好的大小不同的图片
列表,每一张图片都是前一张的0.5倍(这种图片列表就是MipMap链),缩放的时候根据需要缩放
的比例从表中选择一张大小接近的图片来作为缩放的源图片; 该方案的优点:不需要编写新的
底层缩放算法,直接使用前面优化好的插值算法; 缺点:需要预先建立MipMap链,它需要时间,
并且它的储存需要多占用原图片的1/3空间(0.5^2+0.5^4+0.5^6+...=1/3);还有一个不太明显
的小问题,就是在一张图片的连续的比例不同的缩放中,选择会从MipMap的一张源图片跳到另
一张图片,视觉效果上可能会有一个小的跳跃(我在《魔兽世界》里经常看到这种效应:);一种
改进方案就是选择MipMap图片的时候,选择出附近的两张图片作为缩放的源图片;对两张图片
单独进行插值(和原来一致)输出两个值,然后把这两个值线性插值为最终结果;还有一个比较
大的缺点就是当缩放比例不均匀时(比如x轴放大y轴缩小),缩放效果也不好;
(当前很多显卡都提供了MipMap纹理和对应的插值方案,OpenGL和DirectX都提供了操作接口)
("三次线性插值和MipMap链"其实比较简单,这里只给出关键代码或算法)
B: MipMap图片的生成:
原图片缩放到0.5倍(宽和高都为原图片的1/2),在把0.5倍的图片缩放到0.25倍,....
直到宽和高都为1个像素,如果有一个长度先到1就保持1; 缩放过程中,可以可采用前面的缩放插值算法;
如果为了速度可以考虑这样的方案,要求原图片的宽和高必须是2的整数次方的数值,缩放时就可以直接将
2x2的像素快速合并为一个像素(如果允许原图片宽和高为任何值,可以考虑在合并时引入Alpha通道);
C: MipMap链图片的储存方案:
MipMap链图片示意图
可能的一种物理储存方案(我对每张图片加了一个边框)
D: 定义MipMap数据结构:
MipMap数据结构可以定义为一个TPicRegion数组和该数组的大小;
(MipMap图片的储存参见上面的图示)
比如:
typedef std::vector<TPicRegion> TMipMap;
//其中,第一个元素TMipMap[0]指向原始图片,后面的依次为缩小图片;
E: MipMap的选择函数和偏好:
在进行缩放时,根据目标图片缓冲区的大小来动态的选者MipMap中的一幅图片来作为源图片;这就需要一个
选择函数;比如:
{
long oldS=mip[0].width*mip[0].height;
long dstS=dstWidth*dstHeight;
if ( (dstS>=oldS) || (mip.size()==1) )
return 0;
else if (dstS<=1)
return mip.size()-1;
else
return (long)(log(oldS/dstS)*0.5+0.5);
}
选择函数可以增加一个偏好参数:
mip选择偏好:0.5没有偏好,靠近0偏向选择小图片,靠近1偏向选择大图片(质量好一些)
long SelectBestPicIndex(const TMipMap& mip,const long dstWidth,const long dstHeight)
{
long oldS=mip[0].width*mip[0].height;
long dstS=dstWidth*dstHeight;
if ( (dstS>=oldS) || (mip.size()==1) )
return 0;
else if (dstS<=1)
return mip.size()-1;
else
return (long)(log(oldS/dstS)*0.5+public_mip_bias);
}
F:利用MipMap后的缩放效果:
MipMap+近邻取样 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
(利用MipMap做一次近邻取样)
MipMap+二次线性插值 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
(利用MipMap做一次二次线性插值)
MipMap+三次卷积插值 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
(利用MipMap做一次三次卷积插值)
G: 在MipMap的两张图片之间插值:
选择MipMap的时候,同时可以选择相邻的两张MipMap图片;分别进行插值算法后得到两个颜色结果;
对两个MipMap图片产生的评价值可以作为这两个颜色的插值权重,得到最终的颜色插值结果;优点是
缩放效果好,避免跳跃;缺点是速度慢:)
选择和权重函数的一个可能实现:
long BigMip;
long SmallMip;
float BigMipWeight;//[0..1]
};
TMipWeight SelectBestPicIndexEx(const TMipMap& mip,const long dstWidth,const long dstHeight)
{
long oldS=mip[0].width*mip[0].height;
long dstS=dstWidth*dstHeight;
TMipWeight result;
if ( (dstS>=oldS) || (mip.size()==1) )
{
result.BigMip=0;
result.SmallMip=0;
result.BigMipWeight=1.0;
}
else if (dstS<=1)
{
result.BigMip=mip.size()-1;
result.SmallMip=mip.size()-1;
result.BigMipWeight=1.0;
}
else
{
float bestIndex=log(oldS/dstS)*0.5+0.5; //or + public_mip_bias
result.BigMip=(long)bestIndex;
if (bestIndex==mip.size()-1)
{
result.SmallMip=mip.size()-1;
result.BigMipWeight=1.0;
}
else
{
result.SmallMip=result.BigMip+1;
result.BigMipWeight=1.0-(bestIndex-result.BigMip);
}
}
return result;
}
H:MipMap间插值效果:
MipMap+两次近邻取样 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
(利用MipMap做两次近邻取样输出两个值,然后线性插值为最终结果)
三次线性插值 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
(三次线性插值:利用MipMap做两次二次线性插值输出两个值,然后线性插值为最终结果)
MipMap+两次三次卷积插值 缩放到0.4倍 缩放到0.2倍 缩放到0.1倍
(利用MipMap做两次三次卷积插值输出两个值,然后线性插值为最终结果)
(图像缩放系列终于写完了,计划中写图像任意角度的高质量的快速旋转、Alpha图片混合等,尽请期待:)
(ps: 思考中的一个图片压缩方法:利用MipMap来压缩图像数据;输入一张图片,然后生成MipMap链,保存相邻之间图片的差(数值差可能很小,很容易找好的算法压缩得很小)和最顶的一张图片(一个点); 解压的时候依次求和就得到原图片了; 该算法为无损压缩,适合于人物风景等过渡比较多的图片的压缩,不太适合线条类等相邻间颜色变化剧烈的图片;)
转自:http://blog.chinaunix.net/uid-22915173-id-2185545.html
以上是关于关于图像高速缩放算法,目前看到的最好的最清晰的一篇文章2的主要内容,如果未能解决你的问题,请参考以下文章