Fibonacci--poj3070(矩阵快速幂)
Posted 啦咯
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Fibonacci--poj3070(矩阵快速幂)相关的知识,希望对你有一定的参考价值。
http://poj.org/problem?id=3070
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
这道题就是快速幂http://blog.csdn.net/u013795055/article/details/38599321
还有矩阵相乘
#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <math.h> #include <stdlib.h> #include <vector> #include <queue> using namespace std; #define memset(a,b) memset(a,b,sizeof(a)) #define N 4 #define INF 0xfffffff struct node { int a[N][N]; }e; node mm(node p,node q) { node t; for(int i=0;i<2;i++) { for(int j=0;j<2;j++) { t.a[i][j]=0; for(int k=0;k<2;k++) { t.a[i][j]=(t.a[i][j]+(p.a[i][k]*q.a[k][j]))%10000; } } } return t; } node mul(node p,int n) { node q; for(int i=0;i<2;i++) { for(int j=0;j<2;j++) { q.a[i][j]=(i==j); } }///这个是为了当n是奇数是第一次跟q相乘是还是原来的p,为了下一次跟下一奇数相乘
while(n) { if(n&1) q=mm(q,p); n=n/2; p=mm(p,p); } return q; } int main() { int n; while(scanf("%d",&n),n!=-1) { e.a[0][0]=1; e.a[0][1]=1; e.a[1][0]=1; e.a[1][1]=0; node b=mul(e,n); printf("%d\n",b.a[0][1]); } return 0; }
以上是关于Fibonacci--poj3070(矩阵快速幂)的主要内容,如果未能解决你的问题,请参考以下文章