poj3070 矩阵快速幂

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj3070 矩阵快速幂相关的知识,希望对你有一定的参考价值。

Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13438   Accepted: 9562

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

技术分享.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

技术分享.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

技术分享.

第一次写快速矩阵幂,按着Hint讲解的就好, 联想着快速幂,都有一个幂n,底数a,取余mod,还有一个ans = 1,作为初始;这里用技术分享

代替ans = 1, [1,1 ]作为底数a。。大概如此。。

                    [ 1,0]

 1 #include <cstdio>
 2 #include <iostream>
 3 #include <cstring>
 4 const int mod = 10000;
 5 using namespace std;
 6 struct mat {
 7     int a[3][3];
 8     mat() {
 9         memset(a, 0, sizeof(a));
10     }
11     mat operator *(const mat &o) const {
12         mat t;
13         for(int i = 1; i <= 2; i++) {
14             for(int j = 1; j <= 2; j++)
15                 for(int k = 1; k <= 2; k++) {
16                     t.a[i][j] = (t.a[i][j] + a[i][k]*o.a[k][j])%mod;
17                 }
18         }
19         return t;
20     }
21 } a, b;
22 
23 int main() {
24     int n;
25     while(scanf("%d", &n) !=EOF && n!= -1) {
26         a.a[1][1] = a.a[2][2] = 1, a.a[1][2] = a.a[2][1] = 0;
27         b.a[1][1] = b.a[1][2] = b.a[2][1] = 1, b.a[2][2] = 0;
28         if(n == 0) printf("0\n");
29         else {
30             n--;
31             while(n > 0) {
32                 if(n&1) {
33                     a = b*a;
34                     n--;
35                 }
36                 n >>= 1;
37                 b = b*b;
38             }
39             printf("%d\n", a.a[1][1]);
40         }
41     }
42     return 0;
43 }

 

 

 

 

以上是关于poj3070 矩阵快速幂的主要内容,如果未能解决你的问题,请参考以下文章

poj 3070 矩阵快速幂

poj3070 求斐波那契数列第n项 ——矩阵快速幂

Fibonacci--poj3070(矩阵快速幂)

POJ3070 矩阵快速幂模板

POJ3070-Fibonacci-矩阵快速幂

POJ 3070 矩阵快速幂解决fib问题