Vulkan Tutorial 13 Render passes

Posted 黑桃花

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Vulkan Tutorial 13 Render passes相关的知识,希望对你有一定的参考价值。

操作系统:Windows8.1

显卡:Nivida GTX965M

开发工具:Visual Studio 2017


Setup

在我们完成管线的创建工作,我们接下来需要告诉Vulkan渲染时候使用的framebuffer帧缓冲区附件相关信息。我们需要指定多少个颜色和深度缓冲区将会被使用,指定多少个采样器及如何在整个渲染操作中处理它们。所有的这些信息都被封装在一个叫做render pass的对象中,我们新添加一个createRenderPass函数。在initVulkan函数中确保createGraphicsPipeline调用之前,调用它。

 

void initVulkan() {
    createInstance();
    setupDebugCallback();
    createSurface();
    pickPhysicalDevice();
    createLogicalDevice();
    createSwapChain();
    createImageViews();
    createRenderPass();
    createGraphicsPipeline();
}

...

void createRenderPass() {

}

 Attachment description


在教程中仅有一个颜色缓冲区附件被交换链中的一个图像所代表。

void createRenderPass() {
    VkAttachmentDescription colorAttachment = {};
    colorAttachment.format = swapChainImageFormat;
    colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
}

format是颜色附件的格式,它应该与交换链中图像的格式相匹配,同时我们不会做任何多重采样的工作,所以采样器设置为1。

colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;

loadOpstoreOp决定了渲染前和渲染后数据在对应附件的操作行为。有两种选择针对loadOp:

  • VK_ATTACHMENT_LOAD_OP_LOAD: 保存已经存在于当前附件的内容
  • VK_ATTACHMENT_LOAD_OP_CLEAR: 起始阶段以一个常量清理附件内容
  • VK_ATTACHMENT_LOAD_OP_DONT_CARE: 存在的内容未定义,忽略它们

我们要做的是使用清理操作来清理帧缓冲区framebuffer为黑色,在绘制任何新的帧之前。同时有两个选择针对storeOp:

  • VK_ATTACHMENT_STORE_OP_TORE: 渲染的内容会存储在内容,并在过后读取
  • VK_ATTACHMENT_STORE_OP_DONT_CARE: 帧缓冲区的内容在渲染操作完毕后设置为undefined

我们要做的是渲染一个三角形在屏幕上,所以我们选择存储操作。

colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

loadOpstoreOp应用在颜色和深度数据,同时stencilLoadOp / stencilStoreOp应用在模版数据。我们的应用程序不会做任何模版缓冲区的操作,所以它的loading和storing无关紧要。

colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

纹理和帧缓冲区在Vulkan中通常用VkImage 对象配以某种像素格式来代表。但是像素在内存中的布局可以基于预要对image图像进行的操作发生变化。

 

一些常用的布局:

  • VK_IMAGE_LAYOUT_COLOR_ATTACHMET_OPTIMAL: 图像作为颜色附件
  • VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: 图像在交换链中被呈现
  • VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: 图像作为目标,用于内存COPY操作

我们会深入讨论这些内容在纹理章节,现在最重要的是为需要转变的图像指定合适的layout布局进行操作。

 

initialLayout指定图像在开始进入渲染通道render pass前将要使用的布局结构。finalLayout指定当渲染通道结束自动转变时使用的布局。使用VK_IMAGE_LAYOUT_UNDEFINED设置initialLayout,意为不关心图像之前的布局。特殊值表明图像的内容不确定会被保留,但是这并不总要,因为无论如何我们都要清理它。我们希望图像渲染完毕后使用交换链进行呈现,这就解释了为什么finalLayout要设置为VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

Subpasses and attachment references


一个单独的渲染通道可以由多个子通道组成。子通道是渲染操作的一个序列。子通道作用与后续的渲染操作,并依赖之前渲染通道输出到帧缓冲区的内容。比如说后处理效果的序列通常每一步都依赖之前的操作。如果将这些渲染操作分组到一个渲染通道中,通过Vulkan将通道中的渲染操作进行重排序,可以节省内存从而获得更好的性能。对于我们要绘制的三角形,我们只需要一个子通道。

 

每个子通道引用一个或者多个之前使用结构体描述的附件。这些引用本身就是VkAttachmentReference结构体:

VkAttachmentReference colorAttachmentRef = {};
colorAttachmentRef.attachment = 0;
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

attachment附件参数通过附件描述符集合中的索引来持有。我们的集合是由一个VkAttachmentDesription组成的,所以它的索引为0layout为附件指定子通道在持有引用时候的layout。当子通道开始的时候Vulkan会自动转变附件到这个lyaout。因为i我们期望附件起到颜色缓冲区的作用,layout设置为VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL会给我们最好的性能。

 

子通道使用VkSubpassDescription结构体描述:

VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;

Vulkan在未来可能会支持关于compute subpasses的功能,所以在这里我们明确指定graphics subpass图形子通道。下一步为它指定颜色附件的引用:

subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;

附件在数组中的索引直接从片段着色器引用,其 layout(location = 0) out vec4 outColor 指令!

 

可以被子通道引用的附件类型如下:

  • pInputAttachments: 附件从着色器中读取
  • pResolveAttachments: 附件用于颜色附件的多重采样
  • pDepthStencilAttachment: 附件用于深度和模版数据
  • pPreserveAttachments: 附件不被子通道使用,但是数据被保存

Render pass


现在附件和基本的子通道已经介绍过了,我们可以创建渲染通道了。首先新建一个类成员变量持有VkRenderPass对象,该变量在pipelineLayout上定义:

VkRenderPass renderPass;
VkPipelineLayout pipelineLayout;

渲染通道对象创建通过填充VkRenderPassCreateInfo结构体,并配合相关附件和子通道来完成。VkAttachmentReference对象引用附件数组。

VkRenderPassCreateInfo renderPassInfo = {};
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = 1;
renderPassInfo.pAttachments = &colorAttachment;
renderPassInfo.subpassCount = 1;
renderPassInfo.pSubpasses = &subpass;

if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) {
    throw std::runtime_error("failed to create render pass!");
}

就像pipeline layout一样,渲染通道在整个程序生命周期内都被使用,所以需要在退出阶段进行清理:

void cleanup() {
    vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
    vkDestroyRenderPass(device, renderPass, nullptr);
    ...
}

这看起来很多工作量,但是在下一章节我们会把所有的组件整合起来,创建最终的图形管线对象。

 

项目代码 GitHub 地址。

以上是关于Vulkan Tutorial 13 Render passes的主要内容,如果未能解决你的问题,请参考以下文章

Vulkan Tutorial 02 编写Vulkan应用程序框架原型

Vulkan Tutorial 03 理解Instance

Vulkan Tutorial 11 Shader modules

Vulkan Tutorial 01 开发环境搭建之Windows

Vulkan Tutorial 01 开发环境搭建之Windows

Vulkan Tutorial 12 Fixed functions