Vulkan Tutorial 04 理解Validation layers

Posted 张玉宝

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Vulkan Tutorial 04 理解Validation layers相关的知识,希望对你有一定的参考价值。

操作系统:Windows8.1

显卡:Nivida GTX965M

开发工具:Visual Studio 2017


What are validation layers?

Vulkan API的设计核心是尽量最小化驱动程序的额外开销,所谓额外开销更多的是指向渲染以外的运算。其中一个具体的表现就是默认条件下,Vulkan API的错误检查的支持非常有限。即使遍历不正确的值或者将需要的参数传递为空指针,也不会有明确的处理逻辑,并且直接导致崩溃或者未定义的异常行为。之所以这样,是因为Vulkan要求每一个步骤定义都非常明确,导致很容易造成小错误,例如使用新的GPU功能,但是忘记了逻辑设备创建时请求它。

 

但是,这并不意味着这些检查不能添加到具体的API中。Vulkan推出了一个优化的系统,这个系统称之为Validation layers。Validation layers是可选组件,可以挂载到Vulkan函数中调用,以回调其他的操作。Validation layers的常见操作情景有:

 

  1. 根据规范检查参数数值,最终确认是否存与预期不符的情况
  2. 跟踪对象的创建和销毁,以查找是否存在资源的泄漏
  3. 跟踪线程的调用链,确认线程执行过程中的安全性
  4. 将每次函数调用所使用的参数记录到标准的输出中,进行初步的Vulkan概要分析

以下示例代码是一个函数中应用Validation layers的具体实现:

技术分享
VkResult vkCreateInstance(
    const VkInstanceCreateInfo* pCreateInfo,
    const VkAllocationCallbacks* pAllocator,
    VkInstance* instance) {

    if (pCreateInfo == nullptr || instance == nullptr) {
        log("Null pointer passed to required parameter!");
        return VK_ERROR_INITIALIZATION_FAILED;
    }

    return real_vkCreateInstance(pCreateInfo, pAllocator, instance);
}
技术分享

这些Validation layers可以随意的堆叠到Vulkan驱动程序中,如果有必要,你甚至可以包含所有的debug功能。可以简单的开启Validation layers的debug版本,并在release版本中完全禁止,从而为您提供理想的两个版本。

 

Vulkan没有内置任何Validation layers,但是LunarG Vulkan SDK提供了一系列layers用于检测常规的错误异常。他们是完全OpenSource的,所以你可以根据你需要的检测需求应用具体的Validation layers。使用Validation layers是最佳的方式避免你的应用程序在发生未知的行为时收到影响,甚至中断。

 

Vulkan只能使用已经安装到系统上下文的Validation layers。例如,LunarG Validation layers仅在安装了Vulkan SDK的PC上可用。

 

在之前的Vulkan版本中有两种不同类型的Validation layers,分别应用于 instance 和 device specific。这个设计理念希望instance层只会验证与全局Vulkan对象(例如Instance)有关的调用,而device specific层只是验证与特定GPU相关的调用。device specific层已经被废弃,这意味着instance层的Validation layers将应用所有的Vulkan调用。出于兼容性的考虑,规范文档仍然建议在device specific层开启Validation layers,这在某些情景下是有必要的。我们将在logic device层指定与instance相同的Validation layers,稍后会看到。

Using validation layers


在本节中,我们将介绍如何启用Vulkan SDK提供的标准诊断层。就像扩展一样,需要通过指定具体名称来开启validation layers。SDK通过请求VK_LAYER_LUNARG_standard_validaction层,来隐式的开启有所关于诊断layers,从而避免明确的指定所有的明确的诊断层。

 

首先在程序中添加两个配置变量来指定要启用的layers以及是否开启它们。我们选择基于程序是否在调试模式下进行编译。NDEBUG是C++标准宏定义,代表“不调试”。

技术分享
const int WIDTH = 800;
const int HEIGHT = 600;

const std::vector<const char*> validationLayers = {
    "VK_LAYER_LUNARG_standard_validation"
};

#ifdef NDEBUG
    const bool enableValidationLayers = false;
#else
    const bool enableValidationLayers = true;
#endif
技术分享

我们将添加一个新的函数checkValidationLayerSupport,检测所有请求的layers是否可用。首先使用vkEnumerateInstanceLayerProperties函数列出所有可用的层。其用法与vkEnumerateInstanceExtensionProperties相同,在Instance小节中讨论过。

技术分享
bool checkValidationLayerSupport() {
    uint32_t layerCount;
    vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

    std::vector<VkLayerProperties> availableLayers(layerCount);
    vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

    return false;
}
技术分享

接下来检查validationLayers中的所有layer是否存在于availableLayers列表中。我们需要使用strcmp引入<cstring>

技术分享
for (const char* layerName : validationLayers) {
    bool layerFound = false;

    for (const auto& layerProperties : availableLayers) {
        if (strcmp(layerName, layerProperties.layerName) == 0) {
            layerFound = true;
            break;
        }
    }

    if (!layerFound) {
        return false;
    }
}

return true;
技术分享

现在我们在createInstance函数中使用:

技术分享
void createInstance() {
    if (enableValidationLayers && !checkValidationLayerSupport()) {
        throw std::runtime_error("validation layers requested, but not available!");
    }

    ...
}
技术分享

现在以调试模式运行程序,并确保不会发生错误。如果发生错误,请确保正确安装Vulkan SDK。如果没有或者几乎没有layers上报,建议使用最新的SDK,或者到LunarG官方寻求帮助,需要注册帐号。

 

最终,修改VkInstanceCreateInfo结构体,填充当前上下文已经开启的validation layers名称集合。

if (enableValidationLayers) {
    createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
    createInfo.ppEnabledLayerNames = validationLayers.data();
} else {
    createInfo.enabledLayerCount = 0;
}

如果检查成功,vkCreateInstance不会返回VK_ERROR_LAYER_NOT_PRESENT错误,请确保程序运行正确无误。

Message callback


比较遗憾的是单纯开启validation layers是没有任何帮助的,因为到现在没有任何途径将诊断信息回传给应用程序。要接受消息,我们必须设置回调,需要VK_EXT_debug_report扩展。

 

我们新增一个getRequiredExtensions函数,该函数将基于是否开启validation layers返回需要的扩展列表。

技术分享
std::vector<const char*> getRequiredExtensions() {
    std::vector<const char*> extensions;

    unsigned int glfwExtensionCount = 0;
    const char** glfwExtensions;
    glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

    for (unsigned int i = 0; i < glfwExtensionCount; i++) {
        extensions.push_back(glfwExtensions[i]);
    }

    if (enableValidationLayers) {
        extensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
    }

    return extensions;
}
技术分享

GLFW的扩展总是需要的,而debug report扩展是根据编译条件添加。与此同时我们使用VK_EXT_DEBUG_REPORT_EXTENSION_NAME宏定义,它等价字面值 "VK_EXT_debug_report",使用宏定义避免了硬编码。

 

我们在createInstance函数中调用:

auto extensions = getRequiredExtensions();
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
createInfo.ppEnabledExtensionNames = extensions.data();

运行程序确保没有收到VK_ERROR_EXTENSION_NOT_PRESENT错误信息,我们不需要去验证扩展是否存在,因为它会被有效的validation layers引擎的验证。

 

现在让我们看一下callback函数的样子,添加一个静态函数debugCallback,并使用PFN_vkDebugReportCallbackEXT 原型进行修饰。VKAPI_ATTRVKAPI_CALL确保了正确的函数签名,从而被Vulkan调用。

技术分享
static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(
    VkDebugReportFlagsEXT flags,
    VkDebugReportObjectTypeEXT objType,
    uint64_t obj,
    size_t location,
    int32_t code,
    const char* layerPrefix,
    const char* msg,
    void* userData) {

    std::cerr << "validation layer: " << msg << std::endl;

    return VK_FALSE;
}
技术分享

函数的第一个参数指定了消息的类型,它可以通过一下任意标志位组合:

  • VK_DEBUG_REPORT_INFORMATION_BIT_EXT
  • VK_DEBUG_REPORT_WARNING_BIT_EXT
  • VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT
  • VK_DEBUG_REPORT_ERROR_BIT_EXT
  • VK_DEBUG_REPORT_DEBUG_BIT_EXT

objType参数描述作为消息主题的对象的类型,比如一个objVkPhysicalDevice,那么objType就是VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT。这样做被允许是因为Vulkan的内部句柄都被定义为uint64_t

 

msg参数包含指向消息的指针。最后,有一个userData参数可将自定义的数据进行回调。

 

现在需要告知Vulkan关于定义的回调函数。也许你会比较惊讶,即使是debug 回调也需要一个明确的创建和销毁句柄的管理工作。添加一个类成员存储回调句柄,在instance下。

VkDebugReportCallbackEXT callback;

现在添加一个函数setupDebugCallback,该函数会在initVulkan函数 调用createInstance之后调用。

技术分享
void initVulkan() {
    createInstance();
    setupDebugCallback();
}

void setupDebugCallback() {
    if (!enableValidationLayers) return;

}
技术分享

现在我们填充有关回调的结构体详细信息:

VkDebugReportCallbackCreateInfoEXT createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT;
createInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
createInfo.pfnCallback = debugCallback;

标志位允许过滤掉你不希望的消息。pfnCallback字段描述了回调函数的指针。在这里可以有选择的传递一个pUserData指针,最为回调的自定义数据结构使用,比如可以传递HelloTriangleApplication类的指针。

 

该结构体应该传递给vkCreateDebugReportCallbackEXT函数创建VkDebugReportCallbackEXT对象。不幸的是,因为这个功能是一个扩展功能,它不会被自动加载。所以必须使用vkGetInstanceProcAddr查找函数地址。我们将在后台创建代理函数。在HelloTriangleApplication类定义之上添加它。

技术分享
VkResult CreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugReportCallbackEXT* pCallback) {
    auto func = (PFN_vkCreateDebugReportCallbackEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugReportCallbackEXT");
    if (func != nullptr) {
        return func(instance, pCreateInfo, pAllocator, pCallback);
    } else {
        return VK_ERROR_EXTENSION_NOT_PRESENT;
    }
}
技术分享

如果函数无法加载,则vkGetInstanceProcAddr函数返回nullptr。如果非nullptr,就可以调用此函数来创建扩展对象:

if (CreateDebugReportCallbackEXT(instance, &createInfo, nullptr, &callback) != VK_SUCCESS) {
    throw std::runtime_error("failed to set up debug callback!");
}

倒数第二个参数仍然是分配器回调指针,我们仍然设置为nullptr。debug回调与Vulkan instance和layers相对应,所以需要明确指定第一个参数。现在运行程序,关闭窗口,你会在命令行看到提示信息:

validation layer: Debug Report callbacks not removed before DestroyInstance

现在Vulkan已经在程序中发现了一个错误!需要通过调用vkDestroyDebugReportCallbackEXT清理VkDebugReportCallbackEXT对象。与vkCreateDebugReportCallbackEXT类似,该函数需要显性的加载。在CreateDebugReportCallbackEXT下创建另一个代理函数。

void DestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT callback, const VkAllocationCallbacks* pAllocator) {
    auto func = (PFN_vkDestroyDebugReportCallbackEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugReportCallbackEXT");
    if (func != nullptr) {
        func(instance, callback, pAllocator);
    }
}

该函数定义为类静态函数或者外部函数,我们在cleanup函数中进行调用:

技术分享
void cleanup() {
    DestroyDebugReportCallbackEXT(instance, callback, nullptr);
    vkDestroyInstance(instance, nullptr);

    glfwDestroyWindow(window);

    glfwTerminate();
}
技术分享

再次运行程序,会看到错误信息已经消失。如果要查看哪个调用触发了一条消息,可以向消息回调添加断点,并查看堆栈调用链。

Configuration


Validation layers的行为可以有更多的设置,不仅仅是VkDebugReportCallbackCreateInfoEXT结构中指定的标志位信息。浏览Vulkan SDK的Config目录。找到vk_layer_settings.txt文件,里面有说明如何配置layers。

 

要为自己的应用程序配置layers,请将文件赋值到项目的DebugRelease目录,然后按照说明设置需要的功能特性。除此之外,本教程将使用默认的设置。

现在是时候进入系统的Vulkan devices小节了。

 

项目代码获取 GitHub地址。

 

 

以上是关于Vulkan Tutorial 04 理解Validation layers的主要内容,如果未能解决你的问题,请参考以下文章

Vulkan Tutorial 09 图像与视图

Vulkan Tutorial 02 编写Vulkan应用程序框架原型

Vulkan Tutorial 02 编写Vulkan应用程序框架原型

Vulkan Tutorial 11 Shader modules

Vulkan Tutorial 01 开发环境搭建之Windows

Vulkan Tutorial 01 开发环境搭建之Windows