使用tensorflow深度学习识别验证码

Posted 北风之神0509

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用tensorflow深度学习识别验证码相关的知识,希望对你有一定的参考价值。

除了传统的PIL包处理图片,然后用pytessert+OCR识别意外,还可以使用tessorflow训练来识别验证码。

此篇代码大部分是转载的,只改了很少地方。

代码是运行在linux环境,tessorflow没有支持windows的python 2.7。

 

gen_captcha.py代码。

#coding=utf-8
from captcha.image import ImageCaptcha  # pip install captcha
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import random

# 验证码中的字符, 就不用汉字了

number = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
alphabet = [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u,
            v, w, x, y, z]

ALPHABET = [A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
            V, W, X, Y, Z]
‘‘‘
number=[‘0‘,‘1‘,‘2‘,‘3‘,‘4‘,‘5‘,‘6‘,‘7‘,‘8‘,‘9‘]
alphabet =[]
ALPHABET =[]
‘‘‘

# 验证码一般都无视大小写;验证码长度4个字符
def random_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4):
    captcha_text = []
    for i in range(captcha_size):
        c = random.choice(char_set)
        captcha_text.append(c)
    return captcha_text


# 生成字符对应的验证码
def gen_captcha_text_and_image():
    image = ImageCaptcha()

    captcha_text = random_captcha_text()
    captcha_text = ‘‘.join(captcha_text)

    captcha = image.generate(captcha_text)
    #image.write(captcha_text, captcha_text + ‘.jpg‘)  # 写到文件

    captcha_image = Image.open(captcha)
    #captcha_image.show()
    captcha_image = np.array(captcha_image)
    return captcha_text, captcha_image


if __name__ == __main__:
    # 测试
    text, image = gen_captcha_text_and_image()
    print image
    gray = np.mean(image, -1)
    print gray

    f = plt.figure()
    ax = f.add_subplot(111)
    ax.text(0.1, 0.9, text, ha=center, va=center, transform=ax.transAxes)
    plt.imshow(image)

    plt.show()

 

train.py代码。

#coding=utf-8
from gen_captcha import gen_captcha_text_and_image
from gen_captcha import number
from gen_captcha import alphabet
from gen_captcha import ALPHABET

import numpy as np
import tensorflow as tf

"""
text, image = gen_captcha_text_and_image()
print  "验证码图像channel:", image.shape  # (60, 160, 3)
# 图像大小
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
MAX_CAPTCHA = len(text)
print   "验证码文本最长字符数", MAX_CAPTCHA  # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用‘_‘补齐
"""
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
MAX_CAPTCHA = 4

# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)
def convert2gray(img):
    if len(img.shape) > 2:
        gray = np.mean(img, -1)
        # 上面的转法较快,正规转法如下
        # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
        # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
        return gray
    else:
        return img


"""
cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。
np.pad(image,((2,3),(2,2)), ‘constant‘, constant_values=(255,))  # 在图像上补2行,下补3行,左补2行,右补2行
"""

# 文本转向量
char_set = number + alphabet + ALPHABET + [_]  # 如果验证码长度小于4, ‘_‘用来补齐
CHAR_SET_LEN = len(char_set)


def text2vec(text):
    text_len = len(text)
    if text_len > MAX_CAPTCHA:
        raise ValueError(验证码最长4个字符)

    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)

    def char2pos(c):
        if c == _:
            k = 62
            return k
        k = ord(c) - 48
        if k > 9:
            k = ord(c) - 55
            if k > 35:
                k = ord(c) - 61
                if k > 61:
                    raise ValueError(No Map)
        return k

    for i, c in enumerate(text):
        #print text
        idx = i * CHAR_SET_LEN + char2pos(c)
        #print i,CHAR_SET_LEN,char2pos(c),idx
        vector[idx] = 1
    return vector

#print text2vec(‘1aZ_‘)

# 向量转回文本
def vec2text(vec):
    char_pos = vec.nonzero()[0]
    text = []
    for i, c in enumerate(char_pos):
        char_at_pos = i  # c/63
        char_idx = c % CHAR_SET_LEN
        if char_idx < 10:
            char_code = char_idx + ord(0)
        elif char_idx < 36:
            char_code = char_idx - 10 + ord(A)
        elif char_idx < 62:
            char_code = char_idx - 36 + ord(a)
        elif char_idx == 62:
            char_code = ord(_)
        else:
            raise ValueError(error)
        text.append(chr(char_code))
    return "".join(text)


"""
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有
vec = text2vec("F5Sd")
text = vec2text(vec)
print(text)  # F5Sd
vec = text2vec("SFd5")
text = vec2text(vec)
print(text)  # SFd5
"""


# 生成一个训练batch
def get_next_batch(batch_size=128):
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN])

    # 有时生成图像大小不是(60, 160, 3)
    def wrap_gen_captcha_text_and_image():
        while True:
            text, image = gen_captcha_text_and_image()
            if image.shape == (60, 160, 3):
                return text, image

    for i in range(batch_size):
        text, image = wrap_gen_captcha_text_and_image()
        image = convert2gray(image)

        batch_x[i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
        batch_y[i, :] = text2vec(text)

    return batch_x, batch_y


####################################################################

X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH])
Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
keep_prob = tf.placeholder(tf.float32)  # dropout


# 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

    # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
    # w_c2_alpha = np.sqrt(2.0/(3*3*32))
    # w_c3_alpha = np.sqrt(2.0/(3*3*64))
    # w_d1_alpha = np.sqrt(2.0/(8*32*64))
    # out_alpha = np.sqrt(2.0/1024)

    # 3 conv layer
    w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32]))
    b_c1 = tf.Variable(b_alpha * tf.random_normal([32]))
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding=SAME), b_c1))
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=SAME)
    conv1 = tf.nn.dropout(conv1, keep_prob)

    w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
    b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding=SAME), b_c2))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=SAME)
    conv2 = tf.nn.dropout(conv2, keep_prob)

    w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
    b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding=SAME), b_c3))
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=SAME)
    conv3 = tf.nn.dropout(conv3, keep_prob)

    # Fully connected layer
    w_d = tf.Variable(w_alpha * tf.random_normal([8 * 32 * 40, 1024]))
    b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
    dense = tf.nn.dropout(dense, keep_prob)

    w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN]))
    b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN]))
    out = tf.add(tf.matmul(dense, w_out), b_out)
    # out = tf.nn.softmax(out)
    return out


# 训练
def train_crack_captcha_cnn():
    import time
    start_time=time.time()
    output = crack_captcha_cnn()
    # loss
    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
    # 最后一层用来分类的softmax和sigmoid有什么不同?
    # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)

    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
    max_idx_p = tf.argmax(predict, 2)
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    correct_pred = tf.equal(max_idx_p, max_idx_l)
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        step = 0
        while True:
            batch_x, batch_y = get_next_batch(64)
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})
            print time.strftime(%Y-%m-%d %H:%M:%S,time.localtime(time.time())),step, loss_

            # 每100 step计算一次准确率
            if step % 100 == 0:
                batch_x_test, batch_y_test = get_next_batch(100)
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
                print u***************************************************************第%s次的准确率为%s%(step, acc)
                # 如果准确率大于50%,保存模型,完成训练
                if acc > 0.9:                  ##我这里设了0.9,设得越大训练要花的时间越长,如果设得过于接近1,很难达到。如果使用cpu,花的时间很长,cpu占用很高电脑发烫。
                    saver.save(sess, "crack_capcha.model", global_step=step)
                    print time.time()-start_time
                    break

            step += 1


train_crack_captcha_cnn()

 

测试代码:

def crack_captcha(captcha_image):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint(.))

        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})
        text = text_list[0].tolist()
        return text


text, image = gen_captcha_text_and_image()
image = convert2gray(image)
image = image.flatten() / 255
predict_text = crack_captcha(image)
print("正确: {}  预测: {}".format(text, predict_text))

 

如果想要快点测试代码效果,验证码的字符不要设置太多,例如0123这几个数字就可以了。

 

以上是关于使用tensorflow深度学习识别验证码的主要内容,如果未能解决你的问题,请参考以下文章

使用TensorFlow 来实现一个简单的验证码识别过程

TensorFlow验证码识别

多任务验证码识别

Python之TensorFlow的(案例)验证码识别-6

炼数成金 深度学习Tensorflow框架的学习与应用视频教程

深度学习中损失值(loss值)为nan(以tensorflow为例)