多任务验证码识别
Posted 瓜大三哥
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多任务验证码识别相关的知识,希望对你有一定的参考价值。
使用Alexnet网络进行训练,多任务学习:验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册、灌水、发垃圾广告等等 。
Tensorflow是目前最流行的深度学习框架,我们可以用它来搭建自己的卷积神经网络并训练自己的分类器,本文介绍怎样使用Tensorflow构建自己的CNN,怎样训练用于简单的验证码识别的分类器。
1.网络结构
2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名)。模型结构见下图,别看只有寥寥八层(不算input层),但是它有60M以上的参数总量,事实上在参数量上比后面的网络都大。
这个图有点点特殊的地方是卷积部分都是画成上下两块,意思是说吧这一层计算出来的feature map分开,但是前一层用到的数据要看连接的虚线,如图中input层之后的第一层第二层之间的虚线是分开的,是说二层上面的128map是由一层上面的48map计算的,下面同理;而第三层前面的虚线是完全交叉的,就是说每一个192map都是由前面的128+128=256map同时计算得到的。
前后几层(对应位置的点)对中间这一层做一下平滑约束,计算方法是:
具体打开Alexnet的每一阶段(含一次卷积主要计算)来看:
(1)con - relu - pooling - LRN
验证具体计算都在图里面写了,要注意的是input层是227*227,而不是paper里面的224*224,这里可以算一下,主要是227可以整除后面的conv1计算,224不整除。如果一定要用224可以通过自动补边实现,不过在input就补边感觉没有意义,补得也是0。
(2)conv - relu - pool - LRN
和上面基本一样,唯独需要注意的是group=2,这个属性强行把前面结果的feature map分开,卷积部分分成两部分做。
(3)conv - relu
(4)conv-relu
(5)conv - relu - pool
(6)fc - relu - dropout
这里有一层特殊的dropout层,在alexnet中是说在训练的以1/2概率使得隐藏层的某些neuron的输出为0,这样就丢到了一半节点的输出,BP的时候也不更新这些节点。
(7) fc - relu - dropout
(8)fc - softmax
多任务主要体验在去掉了这个全连接层,然后分别使用验证码的个位、十位、百位和千位进行训练
net0 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_0')
net1 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_1')
net2 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_2')
net3 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_3')
2.验证码生成
from captcha.image import ImageCaptcha # pip install captcha
import numpy as np
from PIL import Image
import random
import sys
number = ['0','1','2','3','4','5','6','7','8','9']
def random_captcha_text(char_set=number, captcha_size=4):
# 验证码列表
captcha_text = []
for i in range(captcha_size):
#随机选择
c = random.choice(char_set)
#加入验证码列表
captcha_text.append(c)
return captcha_text
# 生成字符对应的验证码
def gen_captcha_text_and_image():
image = ImageCaptcha()
#获得随机生成的验证码
captcha_text = random_captcha_text()
#把验证码列表转为字符串
captcha_text = ''.join(captcha_text)
#生成验证码
captcha = image.generate(captcha_text)
image.write(captcha_text, 'D:/ten/images/' + captcha_text + '.jpg') # 写到文件
#数量少于10000,因为重名
num = 10000
if __name__ == '__main__':
for i in range(num):
gen_captcha_text_and_image()
sys.stdout.write('\r>> Creating image %d/%d' % (i+1, num))
sys.stdout.flush()
sys.stdout.write('\n')
sys.stdout.flush()
print("生成完毕")
3.验证码识别
import os
import tensorflow as tf
from PIL import Image
from nets import nets_factory
import numpy as np
# 不同字符数量
CHAR_SET_LEN = 10
# 图片高度
IMAGE_HEIGHT = 60
# 图片宽度
IMAGE_WIDTH = 160
# 批次
BATCH_SIZE = 25
filename='captcha_test_iter.txt'
filepath='d:/ten/'
file=open(filepath+filename,'w')
# tfrecord文件存放路径
TFRECORD_FILE="D:/ten/train.tfrecords"
# placeholder
x = tf.placeholder(tf.float32, [None, 224, 224])
y0 = tf.placeholder(tf.float32, [None])
y1 = tf.placeholder(tf.float32, [None])
y2 = tf.placeholder(tf.float32, [None])
y3 = tf.placeholder(tf.float32, [None])
# 学习率
lr = tf.Variable(0.003, dtype=tf.float32)
# 从tfrecord读出数据
def read_and_decode(filename):
# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
# 返回文件名和文件
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'image' : tf.FixedLenFeature([], tf.string),
'label0': tf.FixedLenFeature([], tf.int64),
'label1': tf.FixedLenFeature([], tf.int64),
'label2': tf.FixedLenFeature([], tf.int64),
'label3': tf.FixedLenFeature([], tf.int64),
})
# 获取图片数据
image = tf.decode_raw(features['image'], tf.uint8)
# tf.train.shuffle_batch必须确定shape
image = tf.reshape(image, [224, 224])
# 图片预处理
image = tf.cast(image, tf.float32) / 255.0
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
# 获取label
label0 = tf.cast(features['label0'], tf.int32)
label1 = tf.cast(features['label1'], tf.int32)
label2 = tf.cast(features['label2'], tf.int32)
label3 = tf.cast(features['label3'], tf.int32)
return image, label0, label1, label2, label3
# In[3]:
# 获取图片数据和标签
image, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)
#使用shuffle_batch可以随机打乱
image_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
[image, label0, label1, label2, label3], batch_size = BATCH_SIZE,
capacity = 50000, min_after_dequeue=10000, num_threads=1)
#定义网络结构
train_network_fn = nets_factory.get_network_fn(
'alexnet_v2',
num_classes=CHAR_SET_LEN,
weight_decay=0.0005,
is_training=True)
with tf.Session() as sess:
# inputs: a tensor of size [batch_size, height, width, channels]
X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
# 数据输入网络得到输出值
logits0,logits1,logits2,logits3,end_points = train_network_fn(X)
# 把标签转成one_hot的形式
one_hot_labels0 = tf.one_hot(indices=tf.cast(y0, tf.int32), depth=CHAR_SET_LEN)
one_hot_labels1 = tf.one_hot(indices=tf.cast(y1, tf.int32), depth=CHAR_SET_LEN)
one_hot_labels2 = tf.one_hot(indices=tf.cast(y2, tf.int32), depth=CHAR_SET_LEN)
one_hot_labels3 = tf.one_hot(indices=tf.cast(y3, tf.int32), depth=CHAR_SET_LEN)
# 计算loss
loss0 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits0,labels=one_hot_labels0))
loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits1,labels=one_hot_labels1))
loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits2,labels=one_hot_labels2))
loss3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits3,labels=one_hot_labels3))
# 计算总的loss
total_loss = (loss0+loss1+loss2+loss3)/4.0
# 优化total_loss
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss)
# 计算准确率
correct_prediction0 = tf.equal(tf.argmax(one_hot_labels0,1),tf.argmax(logits0,1))
accuracy0 = tf.reduce_mean(tf.cast(correct_prediction0,tf.float32))
correct_prediction1 = tf.equal(tf.argmax(one_hot_labels1,1),tf.argmax(logits1,1))
accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1,tf.float32))
correct_prediction2 = tf.equal(tf.argmax(one_hot_labels2,1),tf.argmax(logits2,1))
accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2,tf.float32))
correct_prediction3 = tf.equal(tf.argmax(one_hot_labels3,1),tf.argmax(logits3,1))
accuracy3 = tf.reduce_mean(tf.cast(correct_prediction3,tf.float32))
# 用于保存模型
saver = tf.train.Saver()
# 初始化
sess.run(tf.global_variables_initializer())
# 创建一个协调器,管理线程
coord = tf.train.Coordinator()
# 启动QueueRunner, 此时文件名队列已经进队
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(6001):
# 获取一个批次的数据和标签
b_image, b_label0, b_label1 ,b_label2 ,b_label3 = sess.run([image_batch, label_batch0, label_batch1, label_batch2, label_batch3])
# 优化模型
sess.run(optimizer, feed_dict={x: b_image, y0:b_label0, y1: b_label1, y2: b_label2, y3: b_label3})
# 每迭代20次计算一次loss和准确率
if i % 20 == 0:
# 每迭代2000次降低一次学习率
if i%2000 == 0:
sess.run(tf.assign(lr, lr/3))
acc0,acc1,acc2,acc3,loss_ = sess.run([accuracy0,accuracy1,accuracy2,accuracy3,total_loss],feed_dict={x: b_image,
y0: b_label0,
y1: b_label1,
y2: b_label2,
y3: b_label3})
learning_rate = sess.run(lr)
print ("Iter:%d Loss:%.3f Accuracy:%.2f %.2f %.2f %.2f Learning_rate:%.4f" % (i,loss_,acc0,acc1,acc2,acc3,learning_rate))
file.write("Iter:%d Loss:%.3f Accuracy:%.2f %.2f %.2f %.2f Learning_rate:%.4f\n" % (i,loss_,acc0,acc1,acc2,acc3,learning_rate))
if acc0>0.9 and acc1 >0.9 and acc2>0.9 and acc3>0.9 or i==6000:
saver.save(sess, "D:/ten/model/crack_captcha.model", global_step=i)
file.close()
break
# 通知其他线程关闭
coord.request_stop()
# 其他所有线程关闭之后,这一函数才能返回
coord.join(threads)
4.验证结果
5.验证码测试
import os
import tensorflow as tf
from PIL import Image
from nets import nets_factory
import numpy as np
import matplotlib.pyplot as plt
# 不同字符数量
CHAR_SET_LEN = 10
# 图片高度
IMAGE_HEIGHT = 60
# 图片宽度
IMAGE_WIDTH = 160
# 批次
BATCH_SIZE = 1
# tfrecord文件存放路径
TFRECORD_FILE = "D:/ten/test.tfrecords"
#测试数据个数
N_TEST=200
#错误数据个数
# placeholder
x = tf.placeholder(tf.float32, [None, 224, 224])
# 从tfrecord读出数据
def read_and_decode(filename):
# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
# 返回文件名和文件
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'image' : tf.FixedLenFeature([], tf.string),
'label0': tf.FixedLenFeature([], tf.int64),
'label1': tf.FixedLenFeature([], tf.int64),
'label2': tf.FixedLenFeature([], tf.int64),
'label3': tf.FixedLenFeature([], tf.int64),
})
# 获取图片数据
image = tf.decode_raw(features['image'], tf.uint8)
# 没有经过预处理的灰度图
image_raw = tf.reshape(image, [224, 224])
# tf.train.shuffle_batch必须确定shape
image = tf.reshape(image, [224, 224])
# 图片预处理
image = tf.cast(image, tf.float32) / 255.0
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
# 获取label
label0 = tf.cast(features['label0'], tf.int32)
label1 = tf.cast(features['label1'], tf.int32)
label2 = tf.cast(features['label2'], tf.int32)
label3 = tf.cast(features['label3'], tf.int32)
return image, image_raw, label0, label1, label2, label3
# 获取图片数据和标签
image, image_raw, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)
#使用shuffle_batch可以随机打乱
image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
[image, image_raw, label0, label1, label2, label3], batch_size = BATCH_SIZE,
capacity = 50000, min_after_dequeue=10000, num_threads=1)
#定义网络结构
train_network_fn = nets_factory.get_network_fn(
'alexnet_v2',
num_classes=CHAR_SET_LEN,
weight_decay=0.0005,
is_training=False)
with tf.Session() as sess:
# inputs: a tensor of size [batch_size, height, width, channels]
X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
# 数据输入网络得到输出值
logits0,logits1,logits2,logits3,end_points = train_network_fn(X)
# 预测值
predict0 = tf.reshape(logits0, [-1, CHAR_SET_LEN])
predict0 = tf.argmax(predict0, 1)
predict1 = tf.reshape(logits1, [-1, CHAR_SET_LEN])
predict1 = tf.argmax(predict1, 1)
predict2 = tf.reshape(logits2, [-1, CHAR_SET_LEN])
predict2 = tf.argmax(predict2, 1)
predict3 = tf.reshape(logits3, [-1, CHAR_SET_LEN])
predict3 = tf.argmax(predict3, 1)
# 初始化
sess.run(tf.global_variables_initializer())
# 载入训练好的模型
saver = tf.train.Saver()
saver.restore(sess,'D:/ten/model/crack_captcha.model-2320')
# 创建一个协调器,管理线程
coord = tf.train.Coordinator()
# 启动QueueRunner, 此时文件名队列已经进队
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for j in range(100,600,100):
ERROR_COUNT = 0
for i in range(j):
# 获取一个批次的数据和标签
b_image, b_image_raw, b_label0, b_label1 ,b_label2 ,b_label3 = sess.run([image_batch,
image_raw_batch,
label_batch0,
label_batch1,
label_batch2,
label_batch3])
# 显示图片
img=Image.fromarray(b_image_raw[0],'L')
plt.imshow(img)
plt.axis('off')
plt.show()
# 打印标签
print('label:',b_label0, b_label1 ,b_label2 ,b_label3)
# 预测
label0,label1,label2,label3 = sess.run([predict0,predict1,predict2,predict3], feed_dict={x: b_image})
# 打印预测值
print('predict:',label0,label1,label2,label3)
if b_label0!=label0 or b_label1!=label1 or b_label2!=label2 or b_label3!=label3:
ERROR_COUNT = ERROR_COUNT +1
accuracy_rate=1-ERROR_COUNT/N_TEST
print('Test_Number: %d accuracy_rate=%.2f%%\n' % (j,accuracy_rate))
# print('accuracy_rate=%.2f\n',%(accuracy_rate))
# 通知其他线程关闭
coord.request_stop()
# 其他所有线程关闭之后,这一函数才能返回
coord.join(threads)
6.识别结果
Test_Number: 100 accuracy_rate=88.00%
Test_Number: 200 accuracy_rate=76.50%
Test_Number: 300 accuracy_rate=63.00%
Test_Number: 400 accuracy_rate=51.50%
Test_Number: 500 accuracy_rate=37.50%
测试数据个数 |
准确率 |
100 |
88% |
200 |
76.5% |
300 |
63% |
400 |
51.5% |
500 |
37.5% |
参考文献
Multi-digit Number Recognition from Street View Imagery using Deep CNN
CAPTCHA Recognition with Active Deep Learning
http://matthewearl.github.io/2016/05/06/cnn-anpr/
http://blog.csdn.net/xbinworld/article/details/45619685
网络运行图
准确度
损失函数
以上是关于多任务验证码识别的主要内容,如果未能解决你的问题,请参考以下文章