HDU1237 简单计算器 栈+逆波兰式

Posted jzssuanfa

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU1237 简单计算器 栈+逆波兰式相关的知识,希望对你有一定的参考价值。

简单计算器

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11955    Accepted Submission(s): 3896


Problem Description
读入一个仅仅包括 +, -, *, / 的非负整数计算表达式,计算该表达式的值。
 

Input
測试输入包括若干測试用例。每一个測试用例占一行,每行不超过200个字符,整数和运算符之间用一个空格分隔。没有非法表达式。当一行中仅仅有0时输入结束。对应的结果不要输出。
 

Output
对每一个測试用例输出1行,即该表达式的值,精确到小数点后2位。


 

Sample Input
1 + 2 4 + 2 * 5 - 7 / 11 0
 

Sample Output
3.00 13.36

关键地方是在把中缀式转换成后缀式时要保持符号栈从顶開始严格递减,否则先出栈,再进栈。

#include <stdio.h>
#include <string.h>
char str[202], buf[202], sign[202]; //buf存储逆波兰式
double stack[202], a;
int len, n, id, id2, id3, id4;

double perform(double x, double y, char ch){
	if(ch == ‘*‘) return x * y;
	if(ch == ‘/‘) return x / y;
	if(ch == ‘+‘) return x + y;
	return x - y;
}

void check(char ch){
	buf[id2++] = ‘ ‘;
	if(ch == ‘*‘ || ch == ‘/‘){	
		while(id3 && (sign[id3-1] == ‘*‘ || sign[id3-1] == ‘/‘)) 
			buf[id2++] = sign[--id3];
		sign[id3++] = ch;
		return;
	}
	while(id3) buf[id2++] = sign[--id3];
	sign[id3++] = ch;
}

int main(){	
	while(gets(str)){
		len = strlen(str);
		if(len == 1 && str[0] == ‘0‘) break;
		id = id2 = id3 = id4 = 0;
		for(int i = 0; i < len; ++i){
			if(str[i] == ‘ ‘) continue;
			if(str[i] >= ‘0‘ && str[i] <= ‘9‘){
				buf[id2++] = str[i];
			}else check(str[i]);
		}
		while(id3) buf[id2++] = sign[--id3];
		//for(int i = 0; i < id2; ++i) putchar(buf[i]);
	 	for(int i = 0; i < id2; ++i){
			if(buf[i] == ‘ ‘) continue;
			if(buf[i] >= ‘0‘ && buf[i] <= ‘9‘){
				sscanf(buf + i, "%lf%n", &stack[id4++], &n);
				i += n - 1;
			}else stack[id4-2] = perform(stack[id4-2], stack[id4-1], buf[i]), --id4;			
		}
		
		printf("%.2lf\n", stack[0]);
	}
	return 0;
}

2014-11-3 21:55:30更新

#include <stdio.h>
#include <string.h>

#define maxn 1000

char buf[maxn], out[maxn], stack[maxn];
int id, id1, ida;
double A[maxn];

int level(char ch) {
	if(ch == ‘+‘ || ch == ‘-‘) return 1;
	return 2;
}

void check(char ch) {
	while(id1 && level(stack[id1-1]) >= level(ch)) {
		out[id++] = stack[--id1];
	}
	stack[id1++] = ch;
}

double cal(double a, double b, char ch) {
	if(ch == ‘-‘) return a - b;
	if(ch == ‘+‘) return a + b;
	if(ch == ‘*‘) return a * b;
	return a / b;
}

int main() {
	int i, n;
	bool sign;
	double a;
	while(gets(buf)) {
		if(strlen(buf) == 1 && buf[0] == ‘0‘)
			break;
		id = id1 = 0; sign = 0;
		for(i = 0; buf[i]; ++i) {
			if(buf[i] == ‘ ‘) continue;
			if(buf[i] >= ‘0‘ && buf[i] <= ‘9‘ || buf[i] == ‘.‘) {
				if(sign) {
					out[id++] = ‘ ‘;
					sign = 0;
				}
				out[id++] = buf[i];
			}
			else sign = 1, check(buf[i]);
		}

		while(id1) {
			out[id++] = stack[--id1];
		}

		for(i = ida = 0; i < id; ++i) {
			if(out[i] == ‘ ‘) continue;
			if(out[i] >= ‘0‘ && out[i] <= ‘9‘ || out[i] == ‘.‘) {
				sscanf(out + i, "%lf%n", &a, &n);
				A[ida++] = a; i += n - 1;
			} else A[ida-2] = cal(A[ida-2], A[ida-1], out[i]), --ida;
		}

		printf("%.2lf\n", A[0]);
	}
	return 0;
}


以上是关于HDU1237 简单计算器 栈+逆波兰式的主要内容,如果未能解决你的问题,请参考以下文章

(C语言中)逆波兰算法(及计算器)

逆波兰计算器

9栈-逆波兰计算器(输入为逆波兰表达式)

hdu 1237 简单计算器(栈处理)

HDU1237 简单计算器 栈

HDU 1237 简单计算器(栈)