hihoCoder #1043 : 完全背包(板子题)
Posted Angel_Kitty
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hihoCoder #1043 : 完全背包(板子题)相关的知识,希望对你有一定的参考价值。
#1043 : 完全背包
时间限制:20000ms
单点时限:1000ms
内存限制:256MB
描述
且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!
等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!
小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
- 样例输入
-
5 1000 144 990 487 436 210 673 567 58 1056 897
- 样例输出
-
5940
题目链接:https://hihocoder.com/problemset/problem/1043
分析:完全背包板子,自己看吧,这题当作练练手!
下面给出AC代码:1 #include <bits/stdc++.h> 2 using namespace std; 3 const int N=200020; 4 int w[N],v[N],dp[N]; 5 int main() 6 { 7 int n,m; 8 while(scanf("%d%d",&n,&m)!=EOF) 9 { 10 memset(w,0,sizeof(w)); 11 memset(v,0,sizeof(v)); 12 memset(dp,0,sizeof(dp)); 13 for(int i=1;i<=n;i++) 14 scanf("%d%d",&w[i],&v[i]); 15 for(int i=1;i<=n;i++) 16 { 17 for(int j=w[i];j<=m;j++) 18 { 19 dp[j]=max(dp[j],dp[j-w[i]]+v[i]); 20 } 21 } 22 printf("%d\n",dp[m]); 23 } 24 return 0; 25 }
以上是关于hihoCoder #1043 : 完全背包(板子题)的主要内容,如果未能解决你的问题,请参考以下文章