使用Storm实现实时大数据分析

Posted cxzdy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Storm实现实时大数据分析相关的知识,希望对你有一定的参考价值。

转自:http://blog.csdn.net/hguisu/article/details/8454368

简单和明了,Storm让大数据分析变得轻松加愉快。

当今世界,公司的日常运营经常会生成TB级别的数据。数据来源囊括了互联网装置可以捕获的任何类型数据,网站、社交媒体、交易型商业数据以及其它商业环境中创建的数据。考虑到数据的生成量,实时处理成为了许多机构需要面对的首要挑战。我们经常用的一个非常有效的开源实时计算工具就是Storm —— Twitter开发,通常被比作“实时的Hadoop”。然而Storm远比Hadoop来的简单,因为用它处理大数据不会带来新老技术的交替。

Shruthi Kumar、Siddharth Patankar共同效力于Infosys,分别从事技术分析和研发工作。本文详述了Storm的使用方法,例子中的项目名称为“超速报警系统(Speeding Alert System)”。我们想实现的功能是:实时分析过往车辆的数据,一旦车辆数据超过预设的临界值 —— 便触发一个trigger并把相关的数据存入数据库。

 

1.  Storm是什么

 

     全量数据处理使用的大多是鼎鼎大名的hadoop或者hive,作为一个批处理系统,hadoop以其吞吐量大、自动容错等优点,在海量数据处理上得到了广泛的使用。

      Hadoop下的Map/Reduce框架对于数据的处理流程是:

 

      1、 将要处理的数据上传到Hadoop的文件系统HDFS中。

      2、 Map阶段

             a)   Master对Map的预处理:对于大量的数据进行切分,划分为M个16~64M的数据分片(可通过参数自定义分片大小)

             b)   调用Mapper函数:Master为Worker分配Map任务,每个分片都对应一个Worker进行处理。各个Worker读取并调用用户定义的Mapper函数    处理数据,并将结果存入HDFS,返回存储位置给Master。

一个Worker在Map阶段完成时,在HDFS中,生成一个排好序的Key-values组成的文件。并将位置信息汇报给Master。

      3、 Reduce阶段

             a)   Master对Reduce的预处理:Master为Worker分配Reduce任务,他会将所有Mapper产生的数据进行映射,将相同key的任务分配给某个Worker。

             b)   调用Reduce函数:各个Worker将分配到的数据集进行排序(使用工具类Merg),并调用用户自定义的Reduce函数,并将结果写入HDFS。

每个Worker的Reduce任务完成后,都会在HDFS中生成一个输出文件。Hadoop并不将这些文件合并,因为这些文件往往会作为另一个Map/reduce程序的输入。

         以上的流程,粗略概括,就是从HDFS中获取数据,将其按照大小分片,进行分布式处理,最终输出结果。从流程来看,Hadoop框架进行数据处理有以下要求:

1、 数据已经存在在HDFS当中。

2、 数据间是少关联的。各个任务执行器在执行负责的数据时,无需考虑对其他数据的影响,数据之间应尽可能是无联系、不会影响的。

使用Hadoop,适合大批量的数据处理,这是他所擅长的。由于基于Map/Reduce这种单级的数据处理模型进行,因此,如果数据间的关联系较大,需要进行数据的多级交互处理(某个阶段的处理数据依赖于上一个阶段),需要进行多次map/reduce。又由于map/reduce每次执行都需要遍历整个数据集,对于数据的实时计算并不合适,于是有了storm。

      对比Hadoop的批处理,Storm是个实时的、分布式以及具备高容错的计算系统。同Hadoop一样Storm也可以处理大批量的数据,然而Storm在保证高可靠性的前提下还可以让处理进行的更加实时;也就是说,所有的信息都会被处理。Storm同样还具备容错和分布计算这些特性,这就让Storm可以扩展到不同的机器上进行大批量的数据处理。他同样还有以下的这些特性:

  • 易于扩展:对于扩展,伴随着业务的发展,我们的数据量、计算量可能会越来越大,所以希望这个系统是可扩展的。你只需要添加机器和改变对应的topology(拓扑)设置。Storm使用Hadoop Zookeeper进行集群协调,这样可以充分的保证大型集群的良好运行。
  • 每条信息的处理都可以得到保证。
  • Storm集群管理简易。
  • Storm的容错机能:一旦topology递交,Storm会一直运行它直到topology被废除或者被关闭。而在执行中出现错误时,也会由Storm重新分配任务。这是分布式系统中通用问题。一个节点挂了不能影响我的应用。
  • 低延迟。都说了是实时计算系统了,延迟是一定要低的。
  • 尽管通常使用Java,Storm中的topology可以用任何语言设计。

       在线实时流处理模型

       对于处理大批量数据的Map/reduce程序,在任务完成之后就停止了,但Storm是用于实时计算的,所以,相应的处理程序会一直执行(等待任务,有任务则执行)直至手动停止。

       对于Storm,他是实时处理模型,与hadoop的不同是,他是针对在线业务而存在的计算平台,如统计某用户的交易量、生成为某个用户的推荐列表等实时性高的需求。他是一个“流处理”框架。何谓流处理?storm将数据以Stream的方式,并按照Topology的顺序,依次处理并最终生成结果。

当然为了更好的理解文章,你首先需要安装和设置Storm。需要通过以下几个简单的步骤:

  • 从Storm官方下载Storm安装文件
  • 将bin/directory解压到你的PATH上,并保证bin/storm脚本是可执行的。
      尽管 Storm 是使用 Clojure 语言开发的,您仍然可以在 Storm 中使用几乎任何语言编写应用程序。所需的只是一个连接到 Storm 的架构的适配器。已存在针对 Scala、JRuby、Perl 和 php 的适配器,但是还有支持流式传输到 Storm 拓扑结构中的结构化查询语言适配器。

2.  Storm的组件

 

       Storm集群和Hadoop集群表面上看很类似。但是Hadoop上运行的是MapReduce jobs,而在Storm上运行的是拓扑(topology),这两者之间是非常不一样的。一个关键的区别是: 一个MapReduce job最终会结束, 而一个topology永远会运行(除非你手动kill掉)。

       Storm集群主要由一个主节点(Nimbus后台程序)和一群工作节点(worker node)Supervisor的节点组成,通过 Zookeeper进行协调。Nimbus类似Hadoop里面的JobTracker。Nimbus负责在集群里面分发代码,分配计算任务给机器, 并且监控状态。

      每一个工作节点上面运行一个叫做Supervisor的节点。Supervisor会监听分配给它那台机器的工作,根据需要启动/关闭工作进程。每一个工作进程执行一个topology的一个子集;一个运行的topology由运行在很多机器上的很多工作进程组成。

 

技术分享

1、 Nimbus主节点:

     主节点通常运行一个后台程序 —— Nimbus,用于响应分布在集群中的节点,分配任务和监测故障。这个很类似于Hadoop中的Job Tracker。

2、Supervisor工作节点:

      工作节点同样会运行一个后台程序 —— Supervisor,用于收听工作指派并基于要求运行工作进程。每个工作节点都是topology中一个子集的实现。而Nimbus和Supervisor之间的协调则通过Zookeeper系统或者集群。

3、Zookeeper

     Zookeeper是完成Supervisor和Nimbus之间协调的服务。而应用程序实现实时的逻辑则被封装进Storm中的“topology”。topology则是一组由Spouts(数据源)和Bolts(数据操作)通过Stream Groupings进行连接的图。下面对出现的术语进行更深刻的解析。

4、Worker:

       运行具体处理组件逻辑的进程。

5、Task:

       worker中每一个spout/bolt的线程称为一个task. 在storm0.8之后,task不再与物理线程对应,同一个spout/bolt的task可能会共享一个物理线程,该线程称为executor。

6、Topology(拓扑):

       storm中运行的一个实时应用程序,因为各个组件间的消息流动形成逻辑上的一个拓扑结构。一个topology是spouts和bolts组成的图, 通过stream groupings将图中的spouts和bolts连接起来,如下图:

      技术分享

 

     一个topology会一直运行直到你手动kill掉,Storm自动重新分配执行失败的任务, 并且Storm可以保证你不会有数据丢失(如果开启了高可靠性的话)。如果一些机器意外停机它上面的所有任务会被转移到其他机器上。

运行一个topology很简单。首先,把你所有的代码以及所依赖的jar打进一个jar包。然后运行类似下面的这个命令:

      storm jar all-my-code.jar backtype.storm.MyTopology arg1 arg2

这个命令会运行主类: backtype.strom.MyTopology, 参数是arg1, arg2。这个类的main函数定义这个topology并且把它提交给Nimbus。storm jar负责连接到Nimbus并且上传jar包。

Topology的定义是一个Thrift结构,并且Nimbus就是一个Thrift服务, 你可以提交由任何语言创建的topology。上面的方面是用JVM-based语言提交的最简单的方法。

 

7、Spout:

       消息源spout是Storm里面一个topology里面的消息生产者。简而言之,Spout从来源处读取数据并放入topology。Spout分成可靠和不可靠两种;当Storm接收失败时,可靠的Spout会对tuple(元组,数据项组成的列表)进行重发;而不可靠的Spout不会考虑接收成功与否只发射一次。

       消息源可以发射多条消息流stream。使用OutputFieldsDeclarer.declareStream来定义多个stream,然后使用SpoutOutputCollector来发射指定的stream。

      而Spout中最主要的方法就是nextTuple(),该方法会发射一个新的tuple到topology,如果没有新tuple发射则会简单的返回。

       要注意的是nextTuple方法不能阻塞,因为storm在同一个线程上面调用所有消息源spout的方法。

 

另外两个比较重要的spout方法是ack和fail。storm在检测到一个tuple被整个topology成功处理的时候调用ack,否则调用fail。storm只对可靠的spout调用ack和fail。

8、Bolt:

     Topology中所有的处理都由Bolt完成。即所有的消息处理逻辑被封装在bolts里面。Bolt可以完成任何事,比如:连接的过滤、聚合、访问文件/数据库、等等。

        Bolt从Spout中接收数据并进行处理,如果遇到复杂流的处理也可能将tuple发送给另一个Bolt进行处理。即需要经过很多blots。比如算出一堆图片里面被转发最多的图片就至少需要两步:第一步算出每个图片的转发数量。第二步找出转发最多的前10个图片。(如果要把这个过程做得更具有扩展性那么可能需要更多的步骤)。

        Bolts可以发射多条消息流, 使用OutputFieldsDeclarer.declareStream定义stream,使用OutputCollector.emit来选择要发射的stream。

      而Bolt中最重要的方法是execute(),以新的tuple作为参数接收。不管是Spout还是Bolt,如果将tuple发射成多个流,这些流都可以通过declareStream()来声明。

     bolts使用OutputCollector来发射tuple,bolts必须要为它处理的每一个tuple调用OutputCollector的ack方法,以通知Storm这个tuple被处理完成了,从而通知这个tuple的发射者spouts。 一般的流程是: bolts处理一个输入tuple,  发射0个或者多个tuple, 然后调用ack通知storm自己已经处理过这个tuple了。storm提供了一个IBasicBolt会自动调用ack。

9、Tuple:

       一次消息传递的基本单元。本来应该是一个key-value的map,但是由于各个组件间传递的tuple的字段名称已经事先定义好,所以tuple中只要按序填入各个value就行了,所以就是一个value list.

10、Stream:

        源源不断传递的tuple就组成了stream。消息流stream是storm里的关键抽象。一个消息流是一个没有边界的tuple序列, 而这些tuple序列会以一种分布式的方式并行地创建和处理。通过对stream中tuple序列中每个字段命名来定义stream。在默认的情况下,tuple的字段类型可以是:integer,long,short, byte,string,double,float,boolean和byte array。你也可以自定义类型(只要实现相应的序列化器)。

     每个消息流在定义的时候会被分配给一个id,因为单向消息流使用的相当普遍, OutputFieldsDeclarer定义了一些方法让你可以定义一个stream而不用指定这个id。在这种情况下这个stream会分配个值为‘default’默认的id 。

      Storm提供的最基本的处理stream的原语是spout和bolt。你可以实现spout和bolt提供的接口来处理你的业务逻辑。

      技术分享

11、Stream Groupings:

Stream Grouping定义了一个流在Bolt任务间该如何被切分。这里有Storm提供的6个Stream Grouping类型:

1). 随机分组(Shuffle grouping):随机分发tuple到Bolt的任务,保证每个任务获得相等数量的tuple。

2). 字段分组(Fields grouping):根据指定字段分割数据流,并分组。例如,根据“user-id”字段,相同“user-id”的元组总是分发到同一个任务,不同“user-id”的元组可能分发到不同的任务。

3). 全部分组(All grouping):tuple被复制到bolt的所有任务。这种类型需要谨慎使用。

4). 全局分组(Global grouping):全部流都分配到bolt的同一个任务。明确地说,是分配给ID最小的那个task。

5). 无分组(None grouping):你不需要关心流是如何分组。目前,无分组等效于随机分组。但最终,Storm将把无分组的Bolts放到Bolts或Spouts订阅它们的同一线程去执行(如果可能)。

6). 直接分组(Direct grouping):这是一个特别的分组类型。元组生产者决定tuple由哪个元组处理者任务接收。

当然还可以实现CustomStreamGroupimg接口来定制自己需要的分组。

 

storm 和hadoop的对比来了解storm中的基本概念。

  Hadoop Storm
系统角色 JobTracker Nimbus
TaskTracker Supervisor
Child Worker
应用名称 Job Topology
组件接口 Mapper/Reducer Spout/Bolt

 


3.  Storm应用场景

       Storm 与其他大数据解决方案的不同之处在于它的处理方式。Hadoop 在本质上是一个批处理系统。数据被引入 Hadoop 文件系统 (HDFS) 并分发到各个节点进行处理。当处理完成时,结果数据返回到 HDFS 供始发者使用。Storm 支持创建拓扑结构来转换没有终点的数据流。不同于 Hadoop 作业,这些转换从不停止,它们会持续处理到达的数据。

Twitter列举了Storm的三大类应用:

1. 信息流处理{Stream processing}
Storm可用来实时处理新数据和更新数据库,兼具容错性和可扩展性。即Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去。

2. 连续计算{Continuous computation}
Storm可进行连续查询并把结果即时反馈给客户端。比如把Twitter上的热门话题发送到浏览器中。

3. 分布式远程程序调用{Distributed RPC}
       Storm可用来并行处理密集查询。Storm的拓扑结构是一个等待调用信息的分布函数,当它收到一条调用信息后,会对查询进行计算,并返回查询结果。举个例子Distributed RPC可以做并行搜索或者处理大集合的数据。

        通过配置drpc服务器,将storm的topology发布为drpc服务。客户端程序可以调用drpc服务将数据发送到storm集群中,并接收处理结果的反馈。这种方式需要drpc服务器进行转发,其中drpc服务器底层通过thrift实现。适合的业务场景主要是实时计算。并且扩展性良好,可以增加每个节点的工作worker数量来动态扩展。

 

 

4.  项目实施,构建Topology

 

      当下情况我们需要给Spout和Bolt设计一种能够处理大量数据(日志文件)的topology,当一个特定数据值超过预设的临界值时促发警报。使用Storm的topology,逐行读入日志文件并且监视输入数据。在Storm组件方面,Spout负责读入输入数据。它不仅从现有的文件中读入数据,同时还监视着新文件。文件一旦被修改Spout会读入新的版本并且覆盖之前的tuple(可以被Bolt读入的格式),将tuple发射给Bolt进行临界分析,这样就可以发现所有可能超临界的记录。

下一节将对用例进行详细介绍。

临界分析

这一节,将主要聚焦于临界值的两种分析类型:瞬间临界(instant thershold)和时间序列临界(time series threshold)。

  • 瞬间临界值监测:一个字段的值在那个瞬间超过了预设的临界值,如果条件符合的话则触发一个trigger。举个例子当车辆超越80公里每小时,则触发trigger。
  • 时间序列临界监测:字段的值在一个给定的时间段内超过了预设的临界值,如果条件符合则触发一个触发器。比如:在5分钟类,时速超过80KM两次及以上的车辆。

Listing One显示了我们将使用的一个类型日志,其中包含的车辆数据信息有:车牌号、车辆行驶的速度以及数据获取的位置。

AB 123 60 North city
BC 123 70 South city
CD 234 40 South city
DE 123 40 East  city
EF 123 90 South city
GH 123 50 West  city

这里将创建一个对应的XML文件,这将包含引入数据的模式。这个XML将用于日志文件的解析。XML的设计模式和对应的说明请见下表。

技术分享

XML文件和日志文件都存放在Spout可以随时监测的目录下,用以关注文件的实时更新。而这个用例中的topology请见下图。

技术分享

Figure 1:Storm中建立的topology,用以实现数据实时处理

如图所示:FilelistenerSpout接收输入日志并进行逐行的读入,接着将数据发射给ThresoldCalculatorBolt进行更深一步的临界值处理。一旦处理完成,被计算行的数据将发送给DBWriterBolt,然后由DBWriterBolt存入给数据库。下面将对这个过程的实现进行详细的解析。

Spout的实现

Spout以日志文件和XML描述文件作为接收对象。XML文件包含了与日志一致的设计模式。不妨设想一下一个示例日志文件,包含了车辆的车牌号、行驶速度、以及数据的捕获位置。(看下图)

技术分享

Figure2:数据从日志文件到Spout的流程图

Listing Two显示了tuple对应的XML,其中指定了字段、将日志文件切割成字段的定界符以及字段的类型。XML文件以及数据都被保存到Spout指定的路径。

Listing Two:用以描述日志文件的XML文件。

 

[html] view plain copy
 
 print?
  1. <TUPLEINFO>   
  2. <FIELDLIST>   
  3. <FIELD>   
  4. <COLUMNNAME>vehicle_number</COLUMNNAME>   
  5. <COLUMNTYPE>string</COLUMNTYPE>   
  6. </FIELD>   
  7.    
  8. <FIELD>  
  9. <COLUMNNAME>speed</COLUMNNAME>   
  10. <COLUMNTYPE>int</COLUMNTYPE>   
  11. </FIELD>   
  12.    
  13. <FIELD>   
  14. <COLUMNNAME>location</COLUMNNAME>   
  15. <COLUMNTYPE>string</COLUMNTYPE>   
  16. </FIELD>   
  17. </FIELDLIST>   
  18. <DELIMITER>,</DELIMITER>   
  19. </TUPLEINFO>     

 

通过构造函数及它的参数Directory、PathSpout和TupleInfo对象创建Spout对象。TupleInfo储存了日志文件的字段、定界符、字段的类型这些很必要的信息。这个对象通过XSTream序列化XML时建立。

Spout的实现步骤:

  • 对文件的改变进行分开的监听,并监视目录下有无新日志文件添加。
  • 在数据得到了字段的说明后,将其转换成tuple。
  • 声明Spout和Bolt之间的分组,并决定tuple发送给Bolt的途径。

Spout的具体编码在Listing Three中显示。

Listing Three:Spout中open、nextTuple和delcareOutputFields方法的逻辑。

 

[java] view plain copy
 
 print?
  1. public void open( Map conf, TopologyContext context,SpoutOutputCollector collector )     
  2. {     
  3.            _collector = collector;     
  4.          try     
  5.          {     
  6.          fileReader  =  new BufferedReader(new FileReader(new File(file)));    
  7.          }    
  8.          catch (FileNotFoundException e)    
  9.          {    
  10.          System.exit(1);     
  11.          }    
  12. }                                                            
  13.    
  14. public void nextTuple()    
  15. {    
  16.          protected void ListenFile(File file)    
  17.          {    
  18.          Utils.sleep(2000);    
  19.          RandomAccessFile access = null;    
  20.          String line = null;     
  21.             try     
  22.             {    
  23.                 while ((line = access.readLine()) != null)    
  24.                 {    
  25.                     if (line !=null)    
  26.                     {     
  27.                          String[] fields=null;    
  28.                           if (tupleInfo.getDelimiter().equals("|"))  fields = line.split("\\"+tupleInfo.getDelimiter());     
  29.                           else     
  30.                           fields = line.split  (tupleInfo.getDelimiter());     
  31.                           if (tupleInfo.getFieldList().size() == fields.length)  _collector.emit(new Values(fields));    
  32.                     }    
  33.                }    
  34.             }    
  35.             catch (IOException ex){ }    
  36.             }    
  37. }    
  38.    
  39. public void declareOutputFields(OutputFieldsDeclarer declarer)    
  40. {    
  41.       String[] fieldsArr = new String [tupleInfo.getFieldList().size()];    
  42.       for(int i=0; i<tupleInfo.getFieldList().size(); i++)    
  43.       {    
  44.               fieldsArr[i] = tupleInfo.getFieldList().get(i).getColumnName();    
  45.       }    
  46. declarer.declare(new Fields(fieldsArr));    
  47. }        

 

declareOutputFileds()决定了tuple发射的格式,这样的话Bolt就可以用类似的方法将tuple译码。Spout持续对日志文件的数据的变更进行监听,一旦有添加Spout就会进行读入并且发送给Bolt进行处理。

Bolt的实现

Spout的输出结果将给予Bolt进行更深一步的处理。经过对用例的思考,我们的topology中需要如Figure 3中的两个Bolt。

Figure 3:Spout到Bolt的数据流程。

ThresholdCalculatorBolt

Spout将tuple发出,由ThresholdCalculatorBolt接收并进行临界值处理。在这里,它将接收好几项输入进行检查;分别是:

临界值检查

  • 临界值栏数检查(拆分成字段的数目)
  • 临界值数据类型(拆分后字段的类型)
  • 临界值出现的频数
  • 临界值时间段检查

Listing Four中的类,定义用来保存这些值。

Listing Four:ThresholdInfo类

 

[java] view plain copy
 
 print?
  1. public class ThresholdInfo implementsSerializable    
  2.    
  3. {      
  4.         private String action;     
  5.         private String rule;     
  6.         private Object thresholdValue;    
  7.         private int thresholdColNumber;     
  8.         private Integer timeWindow;     
  9.         private int frequencyOfOccurence;     
  10. }     

基于字段中提供的值,临界值检查将被Listing Five中的execute()方法执行。代码大部分的功能是解析和接收值的检测。

 

Listing Five:临界值检测代码段

 

[cpp] view plain copy
 
 print?
  1. public void execute(Tuple tuple, BasicOutputCollector collector)     
  2. {    
  3.     if(tuple!=null)     
  4.     {    
  5.         List<Object> inputTupleList = (List<Object>) tuple.getValues();    
  6.         int thresholdColNum = thresholdInfo.getThresholdColNumber();     
  7.         Object thresholdValue = thresholdInfo.getThresholdValue();     
  8.         String thresholdDataType = tupleInfo.getFieldList().get(thresholdColNum-1).getColumnType();     
  9.         Integer timeWindow = thresholdInfo.getTimeWindow();    
  10.          int frequency = thresholdInfo.getFrequencyOfOccurence();    
  11.          if(thresholdDataType.equalsIgnoreCase("string"))    
  12.          {    
  13.              String valueToCheck = inputTupleList.get(thresholdColNum-1).toString();    
  14.              String frequencyChkOp = thresholdInfo.getAction();    
  15.              if(timeWindow!=null)    
  16.              {    
  17.                  long curTime = System.currentTimeMillis();    
  18.                  long diffInMinutes = (curTime-startTime)/(1000);    
  19.                  if(diffInMinutes>=timeWindow)    
  20.                  {    
  21.                      if(frequencyChkOp.equals("=="))    
  22.                      {    
  23.                           if(valueToCheck.equalsIgnoreCase(thresholdValue.toString()))    
  24.                           {    
  25.                               count.incrementAndGet();    
  26.                               if(count.get() > frequency)    
  27.                                   splitAndEmit(inputTupleList,collector);    
  28.                           }    
  29.                      }    
  30.                      else if(frequencyChkOp.equals("!="))    
  31.                      {    
  32.                          if(!valueToCheck.equalsIgnoreCase(thresholdValue.toString()))    
  33.                          {    
  34.                               count.incrementAndGet();    
  35.                               if(count.get() > frequency)    
  36.                                   splitAndEmit(inputTupleList,collector);    
  37.                           }    
  38.                       }    
  39.                       else                         System.out.println("Operator not supported");     
  40.                   }    
  41.               }    
  42.               else   
  43.               {    
  44.                   if(frequencyChkOp.equals("=="))    
  45.                   {    
  46.                       if(valueToCheck.equalsIgnoreCase(thresholdValue.toString()))    
  47.                       {    
  48.                           count.incrementAndGet();    
  49.                           if(count.get() > frequency)    
  50.                               splitAndEmit(inputTupleList,collector);    
  51.                           }    
  52.                   }    
  53.                   else if(frequencyChkOp.equals("!="))    
  54.                   {    
  55.                        if(!valueToCheck.equalsIgnoreCase(thresholdValue.toString()))    
  56.                        {    
  57.                            count.incrementAndGet();    
  58.                            if(count.get() > frequency)    
  59.                                splitAndEmit(inputTupleList,collector);    
  60.                           }    
  61.                    }    
  62.                }    
  63.             }    
  64.             else if(thresholdDataType.equalsIgnoreCase("int") ||                     thresholdDataType.equalsIgnoreCase("double") ||                     thresholdDataType.equalsIgnoreCase("float") ||                     thresholdDataType.equalsIgnoreCase("long") ||                     thresholdDataType.equalsIgnoreCase("short"))    
  65.             {    
  66.                 String frequencyChkOp = thresholdInfo.getAction();    
  67.                 if(timeWindow!=null)    
  68.                 {    
  69.                      long valueToCheck =                          Long.parseLong(inputTupleList.get(thresholdColNum-1).toString());    
  70.                      long curTime = System.currentTimeMillis();    
  71.                      long diffInMinutes = (curTime-startTime)/(1000);    
  72.                      System.out.println("Difference in minutes="+diffInMinutes);    
  73.                      if(diffInMinutes>=timeWindow)    
  74.                      {    
  75.                           if(frequencyChkOp.equals("<"))    
  76.                           {    
  77.                               if(valueToCheck < Double.parseDouble(thresholdValue.toString()))    
  78.                               {    
  79.                                    count.incrementAndGet();    
  80.                                    if(count.get() > frequency)    
  81.                                        splitAndEmit(inputTupleList,collector);    
  82.                               }    
  83.                           }    
  84.                           else if(frequencyChkOp.equals(">"))    
  85.                           {    
  86.                                if(valueToCheck > Double.parseDouble(thresholdValue.toString()))    
  87.                                 {    
  88.                                    count.incrementAndGet();    
  89.                                    if(count.get() > frequency)    
  90.                                        splitAndEmit(inputTupleList,collector);    
  91.                                }    
  92.                            }    
  93.                            else if(frequencyChkOp.equals("=="))    
  94.                            {    
  95.                               if(valueToCheck == Double.parseDouble(thresholdValue.toString()))    
  96.                               {    
  97.                                   count.incrementAndGet();    
  98.                                   if(count.get() > frequency)    
  99.                                       splitAndEmit(inputTupleList,collector);    
  100.                                }    
  101.                            }    
  102.                            else if(frequencyChkOp.equals("!="))    
  103.                            {    
  104.     . . .    
  105.        

以上是关于使用Storm实现实时大数据分析的主要内容,如果未能解决你的问题,请参考以下文章

大数据生态之storm学习 2019-9-17

Flume+Kafka+Storm+Redis 大数据在线实时分析

10年大数据架构师,进行Kafka+Storm+HDFS整合实践,奉上一生经验

转:大数据架构:flume-ng+Kafka+Storm+HDFS 实时系统组合

大数据架构:flume-ng+Kafka+Storm+HDFS 实时系统组合

大数据学习之Storm实时统计网站访问量案例35