UVa 11082 & 最大流的行列模型

Posted YCuangWhen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVa 11082 & 最大流的行列模型相关的知识,希望对你有一定的参考价值。

题意:

  给出一个矩阵前i行的和与前j列的和,(i∈[1,r],j属于[1,c]),每个元素ai,j∈[1,20],请你还原出这个矩阵,保证有解.

SOL:

  给网络流建模跪了,神一样的建图,如果我我会怎么做呢?...搜索?然而每个元素具有行,列双重相关性...暴力都打不出来吧...

  然而我们顺着搜索的方向想,如果每个点的搜索值最终小于这行的和,那么我们应该做什么?增大它!是不是感觉有点增广的想法出来了------>然而我只是瞎BB...事后觉得可以这么想但考场上并不能这么想出来...

  考虑它的建图,因为每个元素至少为1,即流量至少为1,那它就变成一个有上下界的网络流问题...不会怎么办?因为每个元素都大于等于1那么我们把他都减一!

  我们对每一行的和对应一个点与超级源S相连,容量为这一行的和,对于每条列我们建一个点与汇点相连,容量为列的和,然后行与列的点两两相连,容量为19,也就是数的最大值,然后跑一遍最大流,行与列之间每条边的流量就是原矩阵中的元素.

  如何证明它的正确性?

  显然所有行与列的和是相等的,即源汇的出入边一定都满流,同时,我们可以把每一行与所有列的连边上的流量看做该行对此列所做的"贡献",因为最大流一定使源汇出入边满流,所以一定有一种方案.那么这个显然是正确的.

  发现行与列的关系以及和的限制条件,也许是思路突破的关键吧.

  

  警报!警报!警报!!

    自己打的代码莫名TLE了...因为点不多所以老人家写的EK,然而我写的dinic居然TLE了?smg?...因为时间不多先贴上代码,以后有空回来看...模型是关健啊.

 TLE代码:

  

/*==========================================================================
# Last modified: 2016-03-08 08:03
# Filename: uva11082.cpp
# Description: 
==========================================================================*/
#define me AcrossTheSky 
#include <cstdio> 
#include <cmath> 
#include <ctime> 
#include <string> 
#include <cstring> 
#include <cstdlib> 
#include <iostream> 
#include <algorithm> 
  
#include <set> 
#include <map> 
#include <stack> 
#include <queue> 
#include <vector> 
 
#define lowbit(x) (x)&(-x) 
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++) 
#define FORP(i,a,b) for(int i=(a);i<=(b);i++) 
#define FORM(i,a,b) for(int i=(a);i>=(b);i--) 
#define ls(a,b) (((a)+(b)) << 1) 
#define rs(a,b) (((a)+(b)) >> 1) 
#define getlc(a) ch[(a)][0] 
#define getrc(a) ch[(a)][1] 
 
#define maxn 1000 
#define maxm 1000000 
#define pi 3.1415926535898 
#define _e 2.718281828459 
#define INF 1070000000 
using namespace std; 
typedef long long ll; 
typedef unsigned long long ull; 
 
template<class T> inline 
void read(T& num) { 
    bool start=false,neg=false; 
    char c; 
    num=0; 
    while((c=getchar())!=EOF) { 
        if(c==‘-‘) start=neg=true; 
        else if(c>=‘0‘ && c<=‘9‘) { 
            start=true; 
            num=num*10+c-‘0‘; 
        } else if(start) break; 
    } 
    if(neg) num=-num; 
} 
/*==================split line==================*/ 
struct Edge{
	int from,to,cap,v;
}e[maxm];
int r,c;
int id[maxn][maxn],a[maxn],b[maxn];
int first[maxn],next[maxm],cur[maxn],d[maxn];
bool vis[maxn];
int sume=1,n,S,T;
void addedge(int x,int y,int cap){
	sume++; e[sume].from=x; e[sume].to=y; e[sume].cap=cap;
	next[sume]=first[x]; first[x]=sume; id[x][y]=sume;
	sume++; e[sume].from=y; e[sume].to=x; e[sume].cap=0;
	next[sume]=first[y]; first[y]=sume; id[y][x]=sume;
}
void reset(){
	sume=1;
	a[0]=b[0]=0;
	memset(e,0,sizeof(e));
	memset(next,0,sizeof(next));
	memset(first,0,sizeof(first));
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	//T=maxn-10,S=0;
}
bool bfs(){
	queue<int>q;
	FORP(i,S,T) d[i]=INF;
	//memset(vis,false,sizeof(vis));
	q.push(S); d[S]=0; //vis[S]=true;
	while (!q.empty()){
		int now=q.front(); q.pop();
		for (int i=first[now];i;i=next[i])
			if (d[e[i].to]==INF && e[i].cap){
				d[e[i].to]=d[now]+1;
				//vis[e[i].to]=true;
				q.push(e[i].to);
			}
	}
	return d[T]<INF;
}
int dfs(int now,int a){
	if (now==T || !a) return a;
	int f,flow=0;
	for (int &i=cur[now];i;i=next[i])
		if (d[now]+1==d[e[i].to] && (f=dfs(e[i].to,min(a,e[i].cap)))>0){
			flow+=f; a-=f; e[i].cap-=f; e[i].v+=f; e[i^1].cap+=f;
			if (!a) break;
		}
	return flow;
}
void dinic(){
	int flow=0;
	while (bfs()){
		FORP(i,0,n) cur[i]=first[i];
		flow+=dfs(S,INF);
	}
}
int main(){
	int cas; read(cas); //int cass=1;
	FORP(cass,1,cas){
		reset();
		scanf("%d%d",&r,&c);
		n=r+c+1; S=0; T=r+c+4;
		FORP(i,1,r) scanf("%d",&a[i]);//read(a[i]);
		FORP(i,1,c) scanf("%d",&b[i]);//read(b[i]);
		FORP(i,1,r) addedge(0,i,a[i]-a[i-1]-c);
		FORP(i,1,r)
			FORP(j,r+1,r+c+1) addedge(i,j,19);
		FORP(j,r+1,r+c+1) addedge(j,T,b[j-r]-b[j-r-1]-r);
		printf("Matrix %d\n",cass); //cass++;
		dinic();
		FORP(i,1,r)
			FORP(j,1,c) 
			printf("%d%c",e[id[i][j+r]].v+1,(j==c)?‘\n‘:‘ ‘);
		if (cas) cout << endl;
	}
}

 lrj代码:

  

// UVa11082 Matrix Decompressing
// Rujia Liu
// Slower version with EdmondsKarp
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int maxn = 50 + 5;
const int INF = 1000000000;

struct Edge {
  int from, to, cap, flow;
  Edge(int u, int v, int c, int f):from(u),to(v),cap(c),flow(f) {}
};

struct EdmondsKarp {
  int n, m;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  int a[maxn];           // 当起点到i的可改进量
  int p[maxn];           // 最短路树上p的入弧编号

  void init(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void AddEdge(int from, int to, int cap) {
    edges.push_back(Edge(from, to, cap, 0));
    edges.push_back(Edge(to, from, 0, 0));
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  int Maxflow(int s, int t) {
    int flow = 0;
    for(;;) {
      memset(a, 0, sizeof(a));
      queue<int> Q;
      Q.push(s);
      a[s] = INF;
      while(!Q.empty()) {
        int x = Q.front(); Q.pop();
        for(int i = 0; i < G[x].size(); i++) {
          Edge& e = edges[G[x][i]];
          if(!a[e.to] && e.cap > e.flow) {
            p[e.to] = G[x][i];
            a[e.to] = min(a[x], e.cap-e.flow);
            Q.push(e.to);
          }
        }
        if(a[t]) break;
      }
      if(!a[t]) break;
      for(int u = t; u != s; u = edges[p[u]].from) {
        edges[p[u]].flow += a[t];
        edges[p[u]^1].flow -= a[t];
      }
      flow += a[t];
    }
    return flow;
  }
};

EdmondsKarp g;
int no[maxn][maxn];

int main() {
  int T, R, C, v, kase = 0;
  scanf("%d", &T);
  for(int kase = 1; kase <= T; kase++) {
    scanf("%d%d", &R, &C);
    g.init(R+C+2);
    int last = 0;
    for(int i = 1; i <= R; i++) {
      scanf("%d", &v);
      g.AddEdge(0, i, v - last - C); // row sum is v - last
      last = v;
    }
    last = 0;
    for(int i = 1; i <= C; i++) {
      scanf("%d", &v);
      g.AddEdge(R+i, R+C+1, v - last - R); // col sum is v - last
      last = v;
    }
    for(int i = 1; i <= R; i++)
      for(int j = 1; j <= C; j++) {
        g.AddEdge(i, R+j, 19);
        no[i][j] = g.edges.size() - 2; // no[i][j] is the index of arc for cell(i,j)
      }
    g.Maxflow(0, R+C+1);

    printf("Matrix %d\n", kase);
    for(int i = 1; i <= R; i++) {
      for(int j = 1; j <= C; j++)
        printf("%d ", g.edges[no[i][j]].flow + 1); // we subtracted 1 from every cell
      printf("\n");
    }
    printf("\n");
  }
  return 0;
}

 

以上是关于UVa 11082 & 最大流的行列模型的主要内容,如果未能解决你的问题,请参考以下文章

UVa 11082 - Matrix Decompressing(最大流)

UVA11082 Matrix Decompressing 最大流建模解矩阵,经典

uva11082 Matrix Decompressing

[题解]UVa 11082 Matrix Decompressing

uva 11082Matrix Decompressing(图论--网络流最大流 Dinic+拆点二分图匹配)

UVA11082Matrix Decompressing(有上下界的网络流)