布隆过滤器详解

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了布隆过滤器详解相关的知识,希望对你有一定的参考价值。

参考技术A

布隆过滤器 (英语:Bloom Filter)是 1970 年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。主要用于判断一个元素是否在一个集合中。

通常我们会遇到很多要判断一个元素是否在某个集合中的业务场景,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间也会呈现线性增长,最终达到瓶颈。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为 , , 。

这个时候,布隆过滤器(Bloom Filter)就应运而生。

了解布隆过滤器原理之前,先回顾下 Hash 函数原理。

哈希函数的概念是:将任意大小的输入数据转换成特定大小的输出数据的函数,转换后的数据称为哈希值或哈希编码,也叫散列值。下面是一幅示意图:

所有散列函数都有如下基本特性:

但是用 hash表存储大数据量时,空间效率还是很低,当只有一个 hash 函数时,还很容易发生哈希碰撞。

BloomFilter 是由一个固定大小的二进制向量或者位图(bitmap)和一系列映射函数组成的。

在初始状态时,对于长度为 m 的位数组,它的所有位都被置为0,如下图所示:

当有变量被加入集合时,通过 K 个映射函数将这个变量映射成位图中的 K 个点,把它们置为 1(假定有两个变量都通过 3 个映射函数)。

查询某个变量的时候我们只要看看这些点是不是都是 1 就可以大概率知道集合中有没有它了

为什么说是可能存在,而不是一定存在呢?那是因为映射函数本身就是散列函数,散列函数是会有碰撞的。

布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,因此误判的根源在于相同的 bit 位被多次映射且置 1。

这种情况也造成了布隆过滤器的删除问题,因为布隆过滤器的每一个 bit 并不是独占的,很有可能多个元素共享了某一位。如果我们直接删除这一位的话,会影响其他的元素。(比如上图中的第 3 位)

相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数 ,另外,散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

布隆过滤器可以表示全集,其它任何数据结构都不能;

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加 1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面。这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。

在程序的世界中,布隆过滤器是程序员的一把利器,利用它可以快速地解决项目中一些比较棘手的问题。

如网页 URL 去重、垃圾邮件识别、大集合中重复元素的判断和缓存穿透等问题。

布隆过滤器的典型应用有:

知道了布隆过滤去的原理和使用场景,我们可以自己实现一个简单的布隆过滤器

分布式环境中,布隆过滤器肯定还需要考虑是可以共享的资源,这时候我们会想到 Redis,是的,Redis 也实现了布隆过滤器。

当然我们也可以把布隆过滤器通过 bloomFilter.writeTo() 写入一个文件,放入OSS、S3这类对象存储中。

Redis 提供的 bitMap 可以实现布隆过滤器,但是需要自己设计映射函数和一些细节,这和我们自定义没啥区别。

Redis 官方提供的布隆过滤器到了 Redis 4.0 提供了插件功能之后才正式登场。布隆过滤器作为一个插件加载到 Redis Server 中,给 Redis 提供了强大的布隆去重功能。

在已安装 Redis 的前提下,安装 RedisBloom,有两种方式

直接编译进行安装

使用Docker进行安装

使用

布隆过滤器基本指令:

我们只有这几个参数,肯定不会有误判,当元素逐渐增多时,就会有一定的误判了,这里就不做这个实验了。

上面使用的布隆过滤器只是默认参数的布隆过滤器,它在我们第一次 add 的时候自动创建。

Redis 还提供了自定义参数的布隆过滤器, bf.reserve 过滤器名 error_rate initial_size

但是这个操作需要在 add 之前显式创建。如果对应的 key 已经存在,bf.reserve 会报错

我是一名 Javaer,肯定还要用 Java 来实现的,Java 的 Redis 客户端比较多,有些还没有提供指令扩展机制,笔者已知的 Redisson 和 lettuce 是可以使用布隆过滤器的,我们这里用 Redisson

为了解决布隆过滤器不能删除元素的问题,布谷鸟过滤器横空出世。论文《Cuckoo Filter:Better Than Bloom》作者将布谷鸟过滤器和布隆过滤器进行了深入的对比。相比布谷鸟过滤器而言布隆过滤器有以下不足:查询性能弱、空间利用效率低、不支持反向操作(删除)以及不支持计数。

由于使用较少,暂不深入。

https://www.cs.cmu.edu/~dga/papers/cuckoo-conext2014.pdf

http://www.justdojava.com/2019/10/22/bloomfilter/

https://www.cnblogs.com/cpselvis/p/6265825.html

https://juejin.im/post/5cc5aa7ce51d456e431adac5

布隆过滤器+布隆过滤器(Bloom Filter)详解

 

布隆过滤器+布隆过滤器(Bloom Filter)详解

 

 

程序 = 数据结构 + 算法

—— 图灵奖得主,计算机科学家N.Wirth(沃斯)

A Bloom filter is a space efficient probabilistic data structureconceived by Burton<

以上是关于布隆过滤器详解的主要内容,如果未能解决你的问题,请参考以下文章

redis中布隆过滤器使用详解

布隆过滤器详解

布隆过滤器+布隆过滤器(Bloom Filter)详解

Google布隆过滤器与Redis布隆过滤器详解

布隆过滤器(Bloom Filter)详解

布隆过滤器详解