ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)
Posted cxchanpin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)相关的知识,希望对你有一定的参考价值。
ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)
ufldl出了新教程,感觉比之前的好。从基础讲起。系统清晰,又有编程实践。
在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl。
于是近期就開始搞这个了。教程加上matlab编程,就是完美啊。
新教程的地址是:http://ufldl.stanford.edu/tutorial/
本节是对ufldl学习笔记与编程作业:Softmax Regression(softmax回归)版本号的改进。
哈哈,把向量化的写法给写出来了,尼玛好快啊。
仅仅须要2分钟。200迭代就跑完了。
昨晚的for循环写法跑了我1个半小时。
事实上实现向量化写法,要把各种矩阵给在纸上写出来。
1 感谢tornadomeet,尽管他做的是旧教程的实验,可是从他那里学了几个matlab函数。http://www.cnblogs.com/tornadomeet/archive/2013/03/23/2977621.html
比方sparse和full。‘
2 还有从旧教程http://deeplearning.stanford.edu/wiki/index.php/Exercise:Softmax_Regression
学了
% M is the matrix as described in the text M = bsxfun(@rdivide, M, sum(M))
3 新教程学到了
I=sub2ind(size(A), 1:size(A,1), y);
values = A(I);
下面是softmax_regression_vec.m代码:
function [f,g] = softmax_regression_vec(theta, X,y) % % Arguments: % theta - A vector containing the parameter values to optimize. % In minFunc, theta is reshaped to a long vector. So we need to % resize it to an n-by-(num_classes-1) matrix. % Recall that we assume theta(:,num_classes) = 0. % % X - The examples stored in a matrix. % X(i,j) is the i\'th coordinate of the j\'th example. % y - The label for each example. y(j) is the j\'th example\'s label. % m=size(X,2); n=size(X,1); %theta本来是矩阵,传參的时候,theta(:)这样进来的。是一个vector。仅仅有一列,如今我们得把她变为矩阵 % theta is a vector; need to reshape to n x num_classes. theta=reshape(theta, n, []); num_classes=size(theta,2)+1; % initialize objective value and gradient. f = 0; g = zeros(size(theta)); h = theta\'*X;%h(k,i)第k个theta。第i个样本 a = exp(h); a = [a;ones(1,size(a,2))];%加1行 p = bsxfun(@rdivide,a,sum(a)); c = log2(p); i = sub2ind(size(c), y,[1:size(c,2)]); values = c(i); f = -sum(values); d = full(sparse(1:m,y,1)); d = d(:,1:(size(d,2)-1)); p = p(1:(size(p,1)-1),:);%减1行 g = X*(p\'.-d); % % TODO: Compute the softmax objective function and gradient using vectorized code. % Store the objective function value in \'f\', and the gradient in \'g\'. % Before returning g, make sure you form it back into a vector with g=g(:); % %%% YOUR CODE HERE %%% g=g(:); % make gradient a vector for minFunc
本文作者:linger
本文链接:http://blog.csdn.net/lingerlanlan/article/details/38425929
以上是关于ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)的主要内容,如果未能解决你的问题,请参考以下文章
UFLDL教程笔记及练习答案三(Softmax回归与自我学习***)
UFLDL教程答案:Exercise:Softmax Regression
[机器学习] UFLDL笔记 - Convolutional Neural Network - 反向传播与梯度计算
[机器学习] UFLDL笔记 - Convolutional Neural Network - 反向传播与梯度计算
[机器学习] UFLDL笔记 - Convolutional Neural Network - 全连接局部连接卷积与池化