Linux下C/C++ 手写一个线程池-

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux下C/C++ 手写一个线程池-相关的知识,希望对你有一定的参考价值。

参考技术A

在我们日常生活中会遇到许许多多的问题,如果一个服务端要接受很多客户端的数据,该怎么办?多线程并发内存不够怎么办?所以我们需要了解线程池的相关知识。

1.线程池的简介

线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。线程池线程都是后台线程。每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中。如果某个线程在托管代码中空闲(如正在等待某个事件),则线程池将插入另一个辅助线程来使所有处理器保持繁忙。如果所有线程池线程都始终保持繁忙,但队列中包含挂起的工作,则线程池将在一段时间后创建另一个辅助线程但线程的数目永远不会超过最大值。超过最大值的线程可以排队,但他们要等到其他线程完成后才启动。

2.线程池的组成

1、线程池管理器(ThreadPoolManager):用于创建并管理线程池

2、工作线程(WorkThread): 线程池中线程

3、任务接口(Task):每个任务必须实现的接口,以供工作线程调度任务的执行。

4、任务队列:用于存放没有处理的任务。提供一种缓冲机制。

3.线程池的主要优点

1.避免线程太多,使得内存耗尽

2.避免创建与销毁线程的代价

3.任务与执行分离

1.线程池结构体定义

代码如下(示例):

相关视频推荐

150行代码,带你手写线程池,自行准备linux环境

C++后台开发该学哪些内容,标准技术路线及面经与算法该如何刷

学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂

需要更多C/C++ Linux服务器架构师学习资料加qun 812855908 (资料包括C/C++,Linux,golang技术,内核,nginx,ZeroMQ,mysql,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg,大厂面试题 等)

2.接口定义

代码如下(示例):

3.回调函数

代码如下(示例):

4.全部代码(加注释)

代码如下(示例):

关于线程池是基本代码就在上面了,关于编程这一部分内容,我建议大家还是要自己去动手实现,如果只是单纯的看了一遍,知识这块可能会记住,但是操作起来可能就比较吃力,万事开头难,只要坚持下去,总会有结果的。

(转)高效线程池之无锁化实现(Linux C)

 

本文链接:https://blog.csdn.net/xhjcehust/article/details/45844901
笔者之前照着通用写法练手写过一个小的线程池版本,最近几天复习了一下,发现大多数线程池实现都离不开锁的使用,如互斥量pthread_mutex*结合条件变量pthread_cond*。众所周知,锁的使用对于程序性能影响较大,虽然现有的pthread_mutex*在锁的申请与释放方面做了较大的优化,但仔细想想,线程池的实现是可以做到无锁化的,于是有了本文。

1.常见线程池实现原理

技术图片

如上图所示,工作队列由主线程和工作者线程共享,主线程将任务放进工作队列,工作者线程从工作队列中取出任务执行。共享工作队列的操作需在互斥量的保护下安全进行,主线程将任务放进工作队列时若检测到当前待执行的工作数目小于工作者线程总数,则需使用条件变量唤醒可能处于等待状态的工作者线程。当然,还有其他地方可能也会使用到互斥量和条件变量,不再赘述。

2.无锁化线程池实现原理

技术图片

为解决无锁化的问题,需要避免共享资源的竞争,因此将共享工作队列加以拆分成每工作线程一个工作队列的方式。对于主线程放入工作和工作线程取出任务的竞争问题,可以采取环形队列的方式避免。在解决了锁机制之后,就只剩下条件变量的问题了,条件变量本身即解决条件满足时的线程通信问题,而信号作为一种通信方式,可以代替之,其大体编程范式为:

  1. sigemptyset (&oldmask);
  2. sigemptyset (&signal_mask);
  3. sigaddset (&signal_mask, SIGUSR1);
  4. rc = pthread_sigmask(SIG_BLOCK, &signal_mask, NULL);
  5. if (rc != 0)
  6.     debug(TPOOL_ERROR, "SIG_BLOCK failed");
  7.     return -1;
  8. ...
  9.  
  10.  
  11. while (!condition)
  12. rc = sigwait (&signal_mask, NULL);
  13. if (rc != 0)
  14. debug(TPOOL_ERROR, "sigwait failed");
  15. return -1;
  16.  
  17.  
  18. rc = pthread_sigmask(SIG_SETMASK, &oldmask, NULL);
  19. if (rc != 0)
  20.     debug(TPOOL_ERROR, "SIG_SETMASK failed");
  21.     return -1;

3.无锁化线程池具体实现

在无锁线程池中,区别于常见线程池的地方主要在于信号与条件变量、任务调度算法、增加或减少线程数目后的任务迁移,另外还有一点就是环形队列的实现参考了Linux内核中的kfifo实现。

(1)   信号与条件变量

信号与条件变量的区别主要在于条件变量的唤醒(signal)对于接收线程而言可以忽略,而在未设置信号处理函数的情况下信号的接收会导致接收线程甚至整个程序的终止,因此需要在线程池产生线程之前指定信号处理函数,这样新生的线程会继承这个信号处理函数。多线程中信号的发送主要采用pthread_kill,为避免使用其他信号,本程序中使用了SIGUSR1。

(2)   任务调度算法

常见线程池实现的任务调度主要在操作系统一级通过线程调度实现。考虑到负载均衡,主线程放入任务时应采取合适的任务调度算法将任务放入对应的工作者线程队列,本程序目前已实现Round-Robin和Least-Load算法。Round-Robin即轮询式地分配工作,Least-Load即选择当前具有最少工作的工作者线程放入。

(3)   任务迁移

在线程的动态增加和减少的过程中,同样基于负载均衡的考量,涉及到现有任务的迁移问题。负载均衡算法主要基于平均工作量的思想,即统计当前时刻的总任务数目,均分至每一个线程,求出每个工作者线程应该增加或减少的工作数目,然后从头至尾遍历,需要移出工作的线程与需要移入工作的线程执行任务迁移,相互抵消。最后若还有多出来的工作,再依次分配。迁入工作不存在竞态,因为加入工作始终由主线程完成,而迁出工作则存在竞态,因为在迁出工作的同时工作者线程可能在同时执行任务。所以需要采用原子操作加以修正,其主要思想即预取技术,大致实现为:

  1. do
  2. work = NULL;
  3. if (thread_queue_len(thread) <= 0) //also atomic
  4. break;
  5. tmp = thread->out;
  6. //prefetch work
  7. work = &thread->work_queue[queue_offset(tmp)];
  8. while (!__sync_bool_compare_and_swap(&thread->out, tmp, tmp + 1));
  9. if (work)
  10. // do something

在线程的动态减少后,原先线程上未能执行完的任务只需要由主线程再次根据任务调度算法重新分配至其他存活的工作者线程队列中即可,不存在上述问题,当然,此时可以同时执行负载均衡算法加以优化。

(4)   环形队列

源码中环形队列实现主要参考了Linux内核中kfifo的实现,如下图所示:

技术图片

队列长度为2的整次幂,out和in下标一直递增至越界后回转,其类型为unsigned int,即out指针一直追赶in指针,out和in映射至FiFo的对应下标处,其间的元素即为队列元素。

以上主要是一些方案性的说明,至于具体细节的实现有兴趣的读者可以参考https://github.com/xhjcehust/LFTPool,有问题欢迎随时联系讨论.

以上是关于Linux下C/C++ 手写一个线程池-的主要内容,如果未能解决你的问题,请参考以下文章

手写线程池 - C语言版

(转)高效线程池之无锁化实现(Linux C)

手写线程池 - C++版

一个Linux下C线程池的实现

linux C 线程池

Linux C 实现一个简单的线程池