linux C 线程池

Posted 牧羊少年Zhao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了linux C 线程池相关的知识,希望对你有一定的参考价值。

Linux 多线程编程之 线程池 的原理和一个简单的C实现,提高对多线程编

程的认知,同步处理等操作,以及如何在实际项目中高效的利用多线程开

发。

 

1.  线程池介绍

为什么需要线程池???

目前的大多数网络服务器,包括Web服务器、Email服务器以及数据库服务
器等都具有一个共同点,就是单位时间内必须处理数目巨大的连接请求,
但处理时间却相对较短。

传统多线程方案中我们采用的服务器模型则是一旦接受到请求之后,即创
建一个新的线程,由该线程执行任务。任务执行完毕后,线程退出,这就
是是“即时创建,即时销毁”的策略。尽管与创建进程相比,创建线程的时
间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执
行次数极其频繁,那么服务器将处于不停的创建线程,销毁线程的状态,
这笔开销将是不可忽略的。

线程池为线程生命周期开销问题和资源不足问题提供了解决方案。通过对
多个任务重用线程,线程创建的开销被分摊到了多个任务上。其好处是,
因为在请求到达时线程已经存在,所以无意中也消除了线程创建所带来的
延迟。这样,就可以立即为请求服务,使应用程序响应更快。而且,通过
适当地调整线程池中的线程数目,也就是当请求的数目超过某个阈值时,
就强制其它任何新到的请求一直等待,直到获得一个线程来处理为止,从
而可以防止资源不足。

 

2. 线程池结构

2.1 线程池任务结点结构

线程池任务结点用来保存用户投递过来的的任务,并放入线程池中的线程来执行,任务结构如下:

// 线程池任务结点
struct
worker_t { void * (* process)(void * arg); /*回调函数*/ int paratype; /*函数类型(预留)*/ void * arg; /*回调函数参数*/ struct worker_t * next; /*链接下一个任务节点*/ };

2.2 线程池控制器

线程池控制器用来对线程池进行控制管理,描述当前线程池的最基本信息,包括任务的投递,线

程池状态的更新与查询,线程池的销毁等,其结构如下:

/*线程控制器*/
struct CThread_pool_t {
    pthread_mutex_t queue_lock;     /*互斥锁*/
    pthread_cond_t  queue_ready;    /*条件变量*/
    
    worker_t * queue_head;          /*任务节点链表 保存所有投递的任务*/
    int shutdown;                   /*线程池销毁标志 1-销毁*/
    pthread_t * threadid;           /*线程ID*/
    
    int max_thread_num;             /*线程池可容纳最大线程数*/
    int current_pthread_num;        /*当前线程池存放的线程*/
    int current_pthread_task_num;   /*当前已经执行任务和已分配任务的线程数目和*/
    int current_wait_queue_num;     /*当前等待队列的的任务数目*/
    int free_pthread_num;           /*线程池允许最大的空闲线程数/*/
    
    /**
     *  function:       ThreadPoolAddWorkUnlimit
     *  description:    向线程池投递任务
     *  input param:    pthis   线程池指针
     *                  process 回调函数
     *                  arg     回调函数参数
     *  return Valr:    0       成功
     *                  -1      失败
     */     
    int (* AddWorkUnlimit)(void * pthis, void * (* process)(void * arg), void * arg);
    
    /**
     *  function:       ThreadPoolAddWorkLimit
     *  description:    向线程池投递任务,无空闲线程则阻塞
     *  input param:    pthis   线程池指针
     *                  process 回调函数
     *                  arg     回调函数参数
     *  return Val:     0       成功
     *                  -1      失败
     */     
    int (* AddWorkLimit)(void * pthis, void * (* process)(void * arg), void * arg);
    
    /**
     *  function:       ThreadPoolGetThreadMaxNum
     *  description:    获取线程池可容纳的最大线程数
     *  input param:    pthis   线程池指针
     */     
    int (* GetThreadMaxNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolGetCurrentThreadNum
     *  description:    获取线程池存放的线程数
     *  input param:    pthis   线程池指针
     *  return Val:     线程池存放的线程数
     */     
    int (* GetCurrentThreadNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolGetCurrentTaskThreadNum
     *  description:    获取当前正在执行任务和已经分配任务的线程数目和
     *  input param:    pthis   线程池指针
     *  return Val:     当前正在执行任务和已经分配任务的线程数目和
     */     
    int (* GetCurrentTaskThreadNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolGetCurrentWaitTaskNum
     *  description:    获取线程池等待队列任务数
     *  input param:    pthis   线程池指针
     *  return Val:     等待队列任务数
     */     
    int (* GetCurrentWaitTaskNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolDestroy
     *  description:    销毁线程池
     *  input param:    pthis   线程池指针
     *  return Val:     0       成功
     *                  -1      失败
     */     
    int (* Destroy)(void * pthis);    
};

 

2.3 线程池运行结构

解释:

1) 图中的线程池中的"空闲"和"执行"分别表示空闲线程和执行线程,空闲线程指在正在等待任务的线程,

 同样执行线程指正在执行任务的线程,  两者是相互转换的。当用户投递任务过来则用空闲线程来执行

 该任务,且空闲线程状态转换为执行线程;当任务执行完后,执行线程状态转变为空闲线程。

2) 创建线程池时,正常情况会创建一定数量的线程,  所有线程初始化为空闲线程,线程阻塞等待用户

 投递任务。

3) 用户投递的任务首先放入等待队列queue_head 链表中, 如果线程池中有空闲线程则放入空闲线程中

 执行,否则根据条件选择继续等待空闲线程或者新建一个线程来执行,新建的线程将放入线程池中。

4) 执行的任务会从等待队列中脱离,并在任务执行完后释放任务结点worker_t 

 

3. 线程池控制 / 部分函数解释

3.1 线程池创建

 创建 max_num 个线程 ThreadPoolRoutine,即空闲线程

/**
 *  function:       ThreadPoolConstruct
 *  description:    构建线程池
 *  input param:    max_num   线程池可容纳的最大线程数
 *                  free_num  线程池允许存在的最大空闲线程,超过则将线程释放回操作系统
 *  return Val:     线程池指针                 
 */     
CThread_pool_t * 
ThreadPoolConstruct(int max_num, int free_num)
{
    int i = 0;
    
    CThread_pool_t * pool = (CThread_pool_t *)malloc(sizeof(CThread_pool_t));
    if(NULL == pool)
        return NULL;
    
    memset(pool, 0, sizeof(CThread_pool_t));
    
    /*初始化互斥锁*/
    pthread_mutex_init(&(pool->queue_lock), NULL);
    /*初始化条件变量*/
    pthread_cond_init(&(pool->queue_ready), NULL);
    
    pool->queue_head                = NULL;
    pool->max_thread_num            = max_num; // 线程池可容纳的最大线程数
    pool->current_wait_queue_num    = 0;
    pool->current_pthread_task_num  = 0;
    pool->shutdown                  = 0;
    pool->current_pthread_num       = 0;
    pool->free_pthread_num          = free_num; // 线程池允许存在最大空闲线程
    pool->threadid                  = NULL;
    pool->threadid                  = (pthread_t *)malloc(max_num*sizeof(pthread_t));
    /*该函数指针赋值*/
    pool->AddWorkUnlimit            = ThreadPoolAddWorkUnlimit;
    pool->AddWorkLimit              = ThreadPoolAddWorkLimit;
    pool->Destroy                   = ThreadPoolDestroy;
    pool->GetThreadMaxNum           = ThreadPoolGetThreadMaxNum;
    pool->GetCurrentThreadNum       = ThreadPoolGetCurrentThreadNum;
    pool->GetCurrentTaskThreadNum   = ThreadPoolGetCurrentTaskThreadNum;
    pool->GetCurrentWaitTaskNum     = ThreadPoolGetCurrentWaitTaskNum;
    
    for(i=0; i<max_num; i++) {
        pool->current_pthread_num++;    // 当前池中的线程数
        /*创建线程*/
        pthread_create(&(pool->threadid[i]), NULL, ThreadPoolRoutine, (void *)pool);
        usleep(1000);        
    }
    
    return pool;
}

 

3.2 投递任务

/**
 *  function:       ThreadPoolAddWorkLimit
 *  description:    向线程池投递任务,无空闲线程则阻塞
 *  input param:    pthis   线程池指针
 *                  process 回调函数
 *                  arg     回调函数参数
 *  return Val:     0       成功
 *                  -1      失败
 */     
int
ThreadPoolAddWorkLimit(void * pthis, void * (* process)(void * arg), void * arg)
{ 
    // int FreeThreadNum = 0;
    // int CurrentPthreadNum = 0;
    
    CThread_pool_t * pool = (CThread_pool_t *)pthis;
    
    /*为添加的任务队列节点分配内存*/
    worker_t * newworker  = (worker_t *)malloc(sizeof(worker_t)); 
    if(NULL == newworker) 
        return -1;
    
    newworker->process  = process;  // 回调函数,在线程ThreadPoolRoutine()中执行
    newworker->arg      = arg;      // 回调函数参数
    newworker->next     = NULL;      
    
    pthread_mutex_lock(&(pool->queue_lock));
    
    /*插入新任务队列节点*/
    worker_t * member = pool->queue_head;   // 指向任务队列链表整体
    if(member != NULL) {
        while(member->next != NULL) // 队列中有节点
            member = member->next;  // member指针往后移动
            
        member->next = newworker;   // 插入到队列链表尾部
    } else 
        pool->queue_head = newworker; // 插入到队列链表头
    
    assert(pool->queue_head != NULL);
    pool->current_wait_queue_num++; // 等待队列加1
    
    /*空闲的线程= 当前线程池存放的线程 - 当前已经执行任务和已分配任务的线程数目和*/
    int FreeThreadNum = pool->current_pthread_num - pool->current_pthread_task_num;
    /*如果没有空闲线程且池中当前线程数不超过可容纳最大线程*/
    if((0 == FreeThreadNum) && (pool->current_pthread_num < pool->max_thread_num)) {  //-> 条件为真进行新线程创建
        int CurrentPthreadNum = pool->current_pthread_num;
        
        /*新增线程*/
        pool->threadid = (pthread_t *)realloc(pool->threadid, 
                                        (CurrentPthreadNum+1) * sizeof(pthread_t));
                                        
        pthread_create(&(pool->threadid[CurrentPthreadNum]),
                                              NULL, ThreadPoolRoutine, (void *)pool);
        /*当前线程池中线程总数加1*/                                   
        pool->current_pthread_num++;
        
        /*分配任务线程数加1*/
        pool->current_pthread_task_num++;
        pthread_mutex_unlock(&(pool->queue_lock));
        
        /*发送信号给一个处与条件阻塞等待状态的线程*/
        pthread_cond_signal(&(pool->queue_ready));
        return 0;
    }
    
    pool->current_pthread_task_num++;
    pthread_mutex_unlock(&(pool->queue_lock));
    
    /*发送信号给一个处与条件阻塞等待状态的线程*/
    pthread_cond_signal(&(pool->queue_ready));
//  usleep(10);  //看情况  
    return 0;
}

 投递任务时先创建一个任务结点保存回调函数和函数参数,并将任务结点放入等待队列中,在代码中

 注释"//->条件为真创建新线程",realloc() 会在保存原始内存中的数据不变的基础上新增1个sizeof(pthread_t)

 大小内存。之后更新current_pthread_num,和current_pthread_task_num;并发送信号

 pthread_cond_signal(&(pool->queue_read)),给一个处于条件阻塞等待状态的线程,即线程ThreadPoolRoutin()

 中的pthread_cond_wait(&(pool->queue_read), &(pool->queue_lock))阻塞等待接收信号,重点讲互

 斥锁和添加变量:

  pthread_mutex_t  queue_lock;   /**< 互斥锁*/

  pthread_cond_t    queue_ready;   /**< 条件变量*/ 

 这两个变量时线程池实现中很重要的点,这里简要介绍代码中会用到的相关函数功能;

 

3.3 执行线程

/**
 *  function:       ThreadPoolRoutine
 *  description:    线程池中执行的线程
 *  input param:    arg  线程池指针
 */     
void * 
ThreadPoolRoutine(void * arg)
{
    CThread_pool_t * pool = (CThread_pool_t *)arg;
    
    while(1) {
        /*上锁,pthread_cond_wait()调用会解锁*/
        pthread_mutex_lock(&(pool->queue_lock));
        
        /*队列没有等待任务*/
        while((pool->current_wait_queue_num == 0) && (!pool->shutdown)) {
            /*条件锁阻塞等待条件信号*/
            pthread_cond_wait(&(pool->queue_ready), &(pool->queue_lock));
        }
        
        if(pool->shutdown) {
            pthread_mutex_unlock(&(pool->queue_lock));
            pthread_exit(NULL);         // 释放线程
        }
        
        assert(pool->current_wait_queue_num != 0);
        assert(pool->queue_head != NULL);
        
        pool->current_wait_queue_num--; // 等待任务减1,准备执行任务
        worker_t * worker = pool->queue_head;   // 去等待队列任务节点头
        pool->queue_head = worker->next;        // 链表后移     
        pthread_mutex_unlock(&(pool->queue_lock));
        
        (* (worker->process))(worker->arg);      // 执行回调函数
        
        pthread_mutex_lock(&(pool->queue_lock));
        pool->current_pthread_task_num--;       // 函数执行结束
        free(worker);   // 释放任务结点
        worker = NULL;
        
        if((pool->current_pthread_num - pool->current_pthread_task_num) > pool->free_pthread_num) {
            pthread_mutex_unlock(&(pool->queue_lock));
            break;  // 当线程池中空闲线程超过 free_pthread_num 则将线程释放回操作系统
        }
        pthread_mutex_unlock(&(pool->queue_lock));    
    }
    
    pool->current_pthread_num--;    // 当前线程数减1
    pthread_exit(NULL);             // 释放线程
    
    return (void *)NULL;
}

 这个就是用来执行任务的线程,在初始化创建线程时所有线程都全部阻塞在pthread_cond_wait()处

 此时的线程就为空闲线程,也就是线程被挂起,当收到信号并取得互斥锁时,     表明任务投递过来

 则获取等待队列里的任务结点并执行回调函数;  函数执行结束后回去判断当前等待队列是否还有任

 务,有则接下去执行,否则重新阻塞回到空闲线程状态。

 

4. 完整代码实现

4.1 CThreadPool.h 文件

/**
 *  线程池头文件
 *
 **/

#ifndef _CTHREADPOOL_H_
#define _CTHREADPOOL_H_

#include <pthread.h>

/*线程池可容纳最大线程数*/
#define DEFAULT_MAX_THREAD_NUM      100

/*线程池允许最大的空闲线程,超过则将线程释放回操作系统*/
#define DEFAULT_FREE_THREAD_NUM     10

typedef struct worker_t         worker_t;
typedef struct CThread_pool_t   CThread_pool_t;

/*线程池任务节点*/
struct worker_t {
    void * (* process)(void * arg); /*回调函数*/
    int    paratype;                /*函数类型(预留)*/
    void * arg;                     /*回调函数参数*/
    struct worker_t * next;         /*链接下一个任务节点*/
};

/*线程控制器*/
struct CThread_pool_t {
    pthread_mutex_t queue_lock;     /*互斥锁*/
    pthread_cond_t  queue_ready;    /*条件变量*/
    
    worker_t * queue_head;          /*任务节点链表 保存所有投递的任务*/
    int shutdown;                   /*线程池销毁标志 1-销毁*/
    pthread_t * threadid;           /*线程ID*/
    
    int max_thread_num;             /*线程池可容纳最大线程数*/
    int current_pthread_num;        /*当前线程池存放的线程*/
    int current_pthread_task_num;   /*当前已经执行任务和已分配任务的线程数目和*/
    int current_wait_queue_num;     /*当前等待队列的的任务数目*/
    int free_pthread_num;           /*线程池允许最大的空闲线程数/*/
    
    /**
     *  function:       ThreadPoolAddWorkUnlimit
     *  description:    向线程池投递任务
     *  input param:    pthis   线程池指针
     *                  process 回调函数
     *                  arg     回调函数参数
     *  return Valr:    0       成功
     *                  -1      失败
     */     
    int (* AddWorkUnlimit)(void * pthis, void * (* process)(void * arg), void * arg);
    
    /**
     *  function:       ThreadPoolAddWorkLimit
     *  description:    向线程池投递任务,无空闲线程则阻塞
     *  input param:    pthis   线程池指针
     *                  process 回调函数
     *                  arg     回调函数参数
     *  return Val:     0       成功
     *                  -1      失败
     */     
    int (* AddWorkLimit)(void * pthis, void * (* process)(void * arg), void * arg);
    
    /**
     *  function:       ThreadPoolGetThreadMaxNum
     *  description:    获取线程池可容纳的最大线程数
     *  input param:    pthis   线程池指针
     */     
    int (* GetThreadMaxNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolGetCurrentThreadNum
     *  description:    获取线程池存放的线程数
     *  input param:    pthis   线程池指针
     *  return Val:     线程池存放的线程数
     */     
    int (* GetCurrentThreadNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolGetCurrentTaskThreadNum
     *  description:    获取当前正在执行任务和已经分配任务的线程数目和
     *  input param:    pthis   线程池指针
     *  return Val:     当前正在执行任务和已经分配任务的线程数目和
     */     
    int (* GetCurrentTaskThreadNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolGetCurrentWaitTaskNum
     *  description:    获取线程池等待队列任务数
     *  input param:    pthis   线程池指针
     *  return Val:     等待队列任务数
     */     
    int (* GetCurrentWaitTaskNum)(void * pthis);
    
    /**
     *  function:       ThreadPoolDestroy
     *  description:    销毁线程池
     *  input param:    pthis   线程池指针
     *  return Val:     0       成功
     *                  -1      失败
     */     
    int (* Destroy)(void * pthis);    
};

/**
 *  function:       ThreadPoolConstruct
 *  description:    构建线程池
 *  input param:    max_num   线程池可容纳的最大线程数
 *                  free_num  线程池允许存在的最大空闲线程,超过则将线程释放回操作系统
 *  return Val:     线程池指针                 
 */     
CThread_pool_t * ThreadPoolConstruct(int max_num, int free_num);

/**
 *  function:       ThreadPoolConstructDefault
 *  description:    创建线程池,以默认的方式初始化,未创建线程
 *
 *  return Val:     线程池指针                 
 */     
CThread_pool_t * ThreadPoolConstructDefault(void);

#endif  // _CTHREADPOOL_H_

 

4.2 CThreadPool.c 文件

/**
 *  线程池实现
 *
 **/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <pthread.h>
#include <assert.h>

#include "CThreadPool.h"

void * ThreadPoolRoutine(void * arg); 

/**
 *  function:       ThreadPoolAddWorkLimit
 *  description:    向线程池投递任务,无空闲线程则阻塞
 *  input param:    pthis   线程池指针
 *                  process 回调函数
 *                  arg     回调函数参数
 *  return Val:     0       成功
 *                  -1      失败
 */     
int
ThreadPoolAddWorkLimit(void * pthis, void * (* process)(void * arg), void * arg)
{ 
    // int FreeThreadNum = 0;
    // int CurrentPthreadNum = 0;
    
    CThread_pool_t * pool = (CThread_pool_t *)pthis;
    
    /*为添加的任务队列节点分配内存*/
    worker_t * newworker  = (worker_t *)malloc(sizeof(worker_t)); 
    if(NULL == newworker) 
        return -1;
    
    newworker->process  = process;  // 回调函数,在线程ThreadPoolRoutine()中执行
    newworker->arg      = arg;      // 回调函数参数
    newworker->next     = NULL;      
    
    pthread_mutex_lock(&(pool->queue_lock));
    
    /*插入新任务队列节点*/
    worker_t * member = pool->queue_head;   // 指向任务队列链表整体
    if(member != NULL) {
        while(member->next != NULL) // 队列中有节点
            member = member->next;  // member指针往后移动
            
        member->next = newworker;   // 插入到队列链表尾部
    } else 
        pool->queue_head = newworker; // 插入到队列链表头
    
    assert(pool->queue_head != NULL);
    pool->current_wait_queue_num++; // 等待队列加1
    
    /*空闲的线程= 当前线程池存放的线程 - 当前已经执行任务和已分配任务的线程数目和*/
    int FreeThreadNum = pool->current_pthread_num - pool->current_pthread_task_num;
    /*如果没有空闲线程且池中当前线程数不超过可容纳最大线程*/
    if((0 == FreeThreadNum) && (pool->current_pthread_num < pool->max_thread_num)) {
        int CurrentPthreadNum = pool->current_pthread_num;
        
        /*新增线程*/
        pool->threadid = (pthread_t *)realloc(pool->threadid, 
                                        (CurrentPthreadNum+1) * sizeof(pthread_t));
                                        
        pthread_create(&(pool->threadid[CurrentPthreadNum]),
                                              NULL, ThreadPoolRoutine, (void *)pool);
        /*当前线程池中线程总数加1*/                                   
        pool->current_pthread_num++;
        
        /*分配任务线程数加1*/
        pool->current_pthread_task_num++;
        pthread_mutex_unlock(&(pool->queue_lock));
        
        /*发送信号给一个处与条件阻塞等待状态的线程*/
        pthread_cond_signal(&(pool->queue_ready));
        return 0;
    }
    
    pool->current_pthread_task_num++;
    pthread_mutex_unlock(&(pool->queue_lock));
    
    /*发送信号给一个处与条件阻塞等待状态的线程*/
    pthread_cond_signal(&(pool->queue_ready));
//  usleep(10);  //看情况  
    return 0;
}

/**
 *  function:       ThreadPoolAddWorkUnlimit
 *  description:    向线程池投递任务
 *  input param:    pthis   线程池指针
 *                  process 回调函数
 *                  arg     回调函数参数
 *  return Valr:    0       成功
 *                  -1      失败
 */
int
ThreadPoolAddWorkUnlimit(void * pthis, void * (* process)(void * arg), void * arg)
{
    // int FreeThreadNum = 0;
    // int CurrentPthreadNum = 0;
    
    CThread_pool_t * pool = (CThread_pool_t *)pthis;
    
    /*给新任务队列节点分配内存*/
    worker_t * newworker = (worker_t *)malloc(sizeof(worker_t));
    if(NULL == newworker)
        return -1;
    
    newworker->process  = process;  // 回调函数
    newworker->arg      = arg;      // 回调函数参数
    newworker->next     = NULL;
    
    pthread_mutex_lock(&(pool->queue_lock));
    
    /*新节点插入任务队列链表操作*/
    worker_t * member = pool->queue_head;
    if(member != NULL) {
        while(member->next != NULL)
            member = member->next;
        
        member->next = newworker;       // 插入队列链表尾部
    } else 
        pool->queue_head = newworker;   // 插入到头(也就是第一个节点,之前链表没有节点)
    
    assert(pool->queue_head != NULL);
    pool->current_wait_queue_num++;     // 当前等待队列的的任务数目+1
    
    int FreeThreadNum = pool->current_pthread_num - pool->current_pthread_task_num;
    /*只判断是否没有空闲线程*/
    if(0 == FreeThreadNum) {
        int CurrentPthreadNum = pool->current_pthread_num;
        pool->threadid = (pthread_t *)realloc(pool->threadid,
                                           (CurrentPthreadNum+1)*sizeof(pthread_t));
        pthread_create(&(pool->threadid[CurrentPthreadNum]),NULL,
                                        ThreadPoolRoutine, (void *)pool);
        pool->current_pthread_num++;
        if(pool->current_pthread_num > pool->max_thread_num)
            pool->max_thread_num = pool->current_pthread_num;
        
        pool->current_pthread_task_num++;
        pthread_mutex_unlock(&(pool->queue_lock));
        pthread_cond_signal(&(pool->queue_ready));
        return 0;
    }
    
    pool->current_pthread_task_num++;
    pthread_mutex_unlock(&(pool->queue_lock));
    pthread_cond_signal(&(pool->queue_ready));
//  usleep(10);    
    return 0;   
}

/**
 *  function:       ThreadPoolGetThreadMaxNum
 *  description:    获取线程池可容纳的最大线程数
 *  input param:    pthis   线程池指针
 *  return val:     线程池可容纳的最大线程数
 */     
int
ThreadPoolGetThreadMaxNum(void * pthis)
{
    int num = 0;   
    CThread_pool_t * pool = (CThread_pool_t *)pthis;
    
    pthread_mutex_lock(&(pool->queue_lock));
    num = pool->max_thread_num;
    pthread_mutex_unlock(&(pool->queue_lock));
    
    return num;
}

/**
 *  function:       ThreadPoolGetCurrentThreadNum
 *  description:    获取线程池存放的线程数
 *  input param:    pthis   线程池指针
 *  return Val:     线程池存放的线程数
 */     
int 
ThreadPoolGetCurrentThreadNum(void * pthis)
{
    int num = 0;
    CThread_pool_t * pool = (CThread_pool_t *)pthis;
    
    pthread_mutex_lock(&(pool->queue_lock));
    num = pool->current_pthread_num;
    pthread_mutex_unlock(&(pool->queue_lock));
    
    return num;       
}

/**
 *  function:       ThreadPoolGetCurrentTaskThreadNum
 *  description:    获取当前正在执行任务和已经分配任务的线程数目和
 *  input param:    pthis   线程池指针
 *  return Val:     当前正在执行任务和已经分配任务的线程数目和
 */   
int
ThreadPoolGetCurrentTaskThreadNum(void * pthis)
{
    int num = 0<

以上是关于linux C 线程池的主要内容,如果未能解决你的问题,请参考以下文章

「Linux」400行纯C语言代码带你「手撕线程池」

Linux C 实现一个简单的线程池

IDEA对新建java线程池的建议

linux C 线程池

Linux C编程之二十二 Linux线程池实现

简介Linux C的线程池