week2--操作系统是如何工作的
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了week2--操作系统是如何工作的相关的知识,希望对你有一定的参考价值。
潘恒 原创作品转载请注明出处 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000
一、一个简单的时间片轮转多道程序内核代码
1.源代码
1)进程的启动:
/* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ "pushl %1\n\t" /* push ebp */ "pushl %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to eip */ "popl %%ebp\n\t" : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ );
2)进程的切换:进程的切换分为两种情况,第一种为next->state == 0(下一个进程正在执行时),第二种为进程是一个新进程,还未执行过;
代码分别如下:
next->state == 0:
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { /* switch to next process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ "1:\t" /* next process start here */ "popl %%ebp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); }
新进程:
else { next->state = 0; my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to new process */ asm volatile( "pushl %%ebp\n\t" /* save ebp */ "movl %%esp,%0\n\t" /* save esp */ "movl %2,%%esp\n\t" /* restore esp */ "movl %2,%%ebp\n\t" /* restore ebp */ "movl $1f,%1\n\t" /* save eip */ "pushl %3\n\t" "ret\n\t" /* restore eip */ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); }
2.实验截图(实验楼)
运行:
查看运行进程的代码:
查看时间中断的代码:
3.分析
进程调度的时机
- 中断处理过程(包括时钟中断、I/O中断、系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule();比如sleep,就可能直接调用了schedule
- 内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行调度,也就是说内核线程作为一类的特殊的进程可以主动调度,也可以被动调度;
- 用户态进程无法实现主动调度,仅能通过陷入内核态后的某个时机点进行调度,即在中断处理过程中进行调度。用户态进程只能被动调度。
进程的切换
- 为了控制进程的执行,内核必须有能力挂起正在CPU上执行的进程,并恢复以前挂起的某个进程的执行,这叫做进程切换、任务切换、上下文切换;即进程上下文切换!
- 挂起正在CPU上执行的进程,与中断时保存现场是不同的,中断前后是在同一个进程上下文中,只是由用户态转向内核态执行;
- 进程上下文包含了进程执行需要的所有信息
- 用户地址空间:包括程序代码,数据,用户堆栈等
- 控制信息:进程描述符,内核堆栈等
- 硬件上下文(注意中断也要保存硬件上下文只是保存的方法不同)
- schedule()函数选择一个新的进程来运行,并调用context_switch进行上下文的切换,这个宏调用switch_to来进行关键上下文切换
- next = pick_next_task(rq, prev);//进程调度算法都封装这个函数内部
- context_switch(rq, prev, next);//进程上下文切换
- switch_to利用了prev和next两个参数:prev指向当前进程,next指向被调度的进程
二、操作系统是如何工作的
进程是动态执行的实体,内核是进程的管理者。进程不但包括程序的指令和数据,而且包括程序计数器和CPU的所有寄存器以及存储临时数据的进程堆栈。所以,正在执行的进程包括处理器当前的一切活动。
Linux是一个多进程的操作系统,所以,其他的进程必须等到正在运行的进程空闲CPU后才能运行。当正在运行的进程等待其他的系统资源时,Linux内核将取得CPU的控制权,并将CPU分配给其他正在等待的进程,这就是进程切换。内核中的调度算法决定将CPU分配给哪一个进程。
Linux系统有一个进程控制表(process table),一个进程就是其中的一项。进程控制表中的每一项都是一个task_struct结构,在task_struct结构中存储各种低级和高级的信息,包括从一些硬件设备的寄存器拷贝到进程的工作目录的链接点。进程控制表既是一个数组,又是一个双向链表,同时又是一个树,其物理实现是一个包括多个指针的静态数组。
以上是关于week2--操作系统是如何工作的的主要内容,如果未能解决你的问题,请参考以下文章