Lintcode3 Digit Counts solution 题解

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Lintcode3 Digit Counts solution 题解相关的知识,希望对你有一定的参考价值。

【题目描述】

Count the number of k‘s between 0 and n. k can be 0 - 9.

计算数字k在0到n中的出现的次数,k可能是0~9的一个值。

【题目链接】

http://www.lintcode.com/en/problem/digit-counts/

【题目解析】

方法一: Brute Force, 0到n个数挨个算过去。最大的问题就是效率,当n非常大时,就需要很长的运行时间。

方法二:当某一位的数字小于i时,那么该位出现i的次数为:更高位数字x当前位数;当某一位的数字等于i时,那么该位出现i的次数为:更高位数字x当前位数+低位数字+1;当某一位的数字大于i时,那么该位出现i的次数为:(更高位数字+1)x当前位数

假设一个5位数N=abcde,我们现在来考虑百位上出现2的次数,即,从0到abcde的数中, 有多少个数的百位上是2。分析完它,就可以用同样的方法去计算个位,十位,千位, 万位等各个位上出现2的次数。

当百位c为0时,比如说12013,0到12013中哪些数的百位会出现2?我们从小的数起, 200~299, 1200~1299, 2200~2299, … , 11200~11299, 也就是固定低3位为200~299,然后高位依次从0到11,共12个。再往下12200~12299 已经大于12013,因此不再往下。所以,当百位为0时,百位出现2的次数只由更高位决定, 等于更高位数字(12)x当前位数(100)=1200个。

当百位c为1时,比如说12113。分析同上,并且和上面的情况一模一样。 最大也只能到11200~11299,所以百位出现2的次数也是1200个。

上面两步综合起来,可以得到以下结论:

当某一位的数字小于2时,那么该位出现2的次数为:更高位数字x当前位数

当百位c为2时,比如说12213。那么,我们还是有200~299, 1200~1299, 2200~2299, … , 11200~11299这1200个数,他们的百位为2。但同时,还有一部分12200~12213, 共14个(低位数字+1)。所以,当百位数字为2时, 百位出现2的次数既受高位影响也受低位影响,结论如下:

当某一位的数字等于2时,那么该位出现2的次数为:更高位数字x当前位数+低位数字+1

当百位c大于2时,比如说12313,那么固定低3位为200~299,高位依次可以从0到12, 这一次就把12200~12299也包含了,同时也没低位什么事情。因此出现2的次数是: (更高位数字+1)x当前位数。结论如下:

当某一位的数字大于2时,那么该位出现2的次数为:(更高位数字+1)x当前位数

【参考答案】

http://www.jiuzhang.com/solutions/digit-counts/


以上是关于Lintcode3 Digit Counts solution 题解的主要内容,如果未能解决你的问题,请参考以下文章

[Algorithm] 3. Digit Counts

Lintcode003.Digit Counts

lintcode-medium-Digit Counts

Project Euler 63: Powerful digit counts

P1118 [USACO06FEB]Backward Digit Sums G/S

2021-11-04:计算右侧小于当前元素的个数。给你`一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是 nums[i] 右(