[BZOJ]4805: 欧拉函数求和

Posted ditoly

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[BZOJ]4805: 欧拉函数求和相关的知识,希望对你有一定的参考价值。

解题思路类似莫比乌斯函数之和

题目大意:求[1,n]内的欧拉函数$\\varphi$之和。($n<=2*10^{9}$)

思路:令$ M(n)=\\sum_{i=1}^{n}\\varphi (i)  $,题目所求即为$ M(n) $。

由于$ \\sum_{d|n} \\varphi (d)=n $ ,所以$ \\sum_{i=1}^{n} \\sum_{d|i} \\varphi (d)=\\frac{n(n+1)}{2} $

令$ i=kd $,则有$ \\sum_{i=1}^{n} \\sum_{d|i} \\varphi (d)= \\sum_{k=1}^{n} \\sum_{d=1}^{\\left \\lfloor n/k \\right \\rfloor} \\varphi (d) = \\sum_{k=1}^{n} M(\\left \\lfloor n/k \\right \\rfloor) =\\frac{n(n+1)}{2} $

那么$ M(n)=\\frac{n(n+1)}{2}-\\sum_{i=2}^{n} M(\\left \\lfloor n/i \\right \\rfloor) $

由于$ \\left \\lfloor n/i \\right \\rfloor $的取值只有$ O(\\sqrt{n}) $种,预处理出前$ n^{\\frac{2}{3}} $的$ M(n) $,然后记忆化搜索,可以证明总时间复杂度为$ O(n^{\\frac{2}{3}}) $。

#include<cstdio>
#define ll long long
#define MN 1600000
#define MOD 2333333
struct edge{edge*nx;ll f;int x;}*h[MOD];
ll f[MN+5];
int p[MN+5],pn;
bool u[MN+5];
ll cal(int n)
{
    if(n<=MN)return f[n];
    for(edge*i=h[n%MOD];i;i=i->nx)if(i->x==n)return i->f;
    edge*np=new edge;*np=(edge){h[n%MOD],1LL*n*(n+1)>>1,n};h[n%MOD]=np;
    for(int i=2,ls;i<=n;i=ls+1)ls=n/(n/i),np->f-=(ls-i+1)*cal(n/i);
    return np->f;
}
int main()
{
    int n,i,j;
    scanf("%d",&n);
    for(f[1]=1,i=2;i<=MN;++i)
    {
        if(!u[i])p[++pn]=i,f[i]=i-1;
        for(j=1;i*p[j]<=MN&&(u[i*p[j]]=1);++j)
            if(i%p[j])f[i*p[j]]=f[i]*(p[j]-1);
            else{f[i*p[j]]=f[i]*p[j];break;}
        f[i]+=f[i-1];
    }
    printf("%lld",cal(n));
}

 

以上是关于[BZOJ]4805: 欧拉函数求和的主要内容,如果未能解决你的问题,请参考以下文章

BZOJ4805欧拉函数求和(杜教筛)

Bzoj4805: 欧拉函数求和

BZOJ 4805 欧拉函数求和

[BZOJ]4805: 欧拉函数求和

BZOJ3944/4805Sum/欧拉函数求和 杜教筛

BZOJ 2190 仪仗队(线性筛欧拉函数)